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CHAPTER 1

INTRODUCTION

The necessity of dealing with signals and systems having two
or 'more independent parameters is now well recognized.
Specific areas where multidimensional signal processing find
applications include image processing, remote sensing, target
tracking, robotics, geophysical and astronomical data
processing. A wide variety of problems belonging to these
categories can be dealt with either by the methods of
multidimensional frequency selective filtering or by
employing multidimensional modelling schemes. For most
practical applications two specific types of multidimensional
filters are of interest. To exemplify the situation it may be
recalled that in image processing type applications the
processing scheme is mandated to be rotation invariant which
requires that pass/stop regions of the frequency response of
the filter be spherically symmetric in the multidimensional
frequency hyperspace. On the other hand, in the problem of
discriminating image regions moving with different velocities
(e.g., a target against a background) the dynamic scene can
be modelled as a time dependent inténsity distribution
s(x,y,t) or its Fourier transform S(u,v,f) where u, v are the
spatial frequencies and £ is the temporal frequency. We then
have:

S(x,y,t) = m(x-xo-cxt,y-yo-cyt) +

(1-X(x-x°-cxt,y—y°-cyt)].b(x-dxt,y—dyt)

(1.1)

' where m(x,y) and b(x,y) are textural functions of the object
and the background; A(x,y) is a mask function whose value is
’ one in regions where the object is present and zero in
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regions where no object is present; (xa.yo) is the coordinate
of the sensor. Considering the fourier transform of (l1.1) we
then have:

S(u,v,£f)= M(u,v,£f) + B(u,v,£) - A(u,v,£)*B(u,v,£f) (1.2)

where * denotes 3-D convolution. Analysis of this equation
reveals that the spectral energies of image regions moving
with different velocities are concentrated in different
planes in the 3-D (u,v,f) frequency space. Therefore, they
can be discriminated by linear spatio-temporal filters the
frequency responses of which are fitted to different
velocity planes.

Furthermore, due to possible interrelations and redundancies
in the large amount of image data one needs a spatio-temporal
3-D stochastic model of the data field. where again two of
the dimensions indicate the space coordinates and the third
dimension represents the time coordinate. The need for
estimation, prediction, noise filtering etc. associated with
problems such as displacement estimation, movement
compensated prediction of time varying images thus become
apparent.

Considerations other than those mentioned above are also
highly important in the successful operation of a
multidimensional recursive digital filter when realization
in hardware is sought. These are: (i) insensitivity to
coefficient pertubation i.e., numerical stability to counter
the effects of inevitable rounding and truncation of signal
values (ii) fault tolerance i.e., insensitivity of the
overall filter performance to sudden and unexpected faults in
digital circuitry (iii) feasibility of hardware

implementation in currently emerging high speed architectures
e.g., the systolic architecture and finally, (iv) the
property that it can be conveniently made adaptive when the




signal characteristics vary in the spatial or in the temporal
domain.

The <class of one-dimensional digital filters which has been
found to satisfy all of the desirable characteristics
mentioned above can, from a fundamental point of view, be
broadly categorized as the structurally passive filters.
Structurally passive digital filters are those which are not
only passive (i.e, nonenergy generating in a discrete sense)
from the input output point of view, but the most elementary
building blocks which constitute the filter structure are
also. The fact that structurally passivity, in addition to
being responsible for the properties of numerical stability,
fault tolerant and adaptivity, can also be exploited towards
the goal of implementing the filter in highspeed VLSI
structures is now known in the one-dimensional context. The
well known lattice filters, wave digital filters and the
orthogonal filters belong -to this class of filters.

Steps towards the analysis and design of multidimensional
structurally passive digital filters have been taken in the
investigation reported here. Since an appropriate transform
domain description of multidimensional passive (or lossless)
linear shift invariant gquarter plane filters requires a
proper notion of stable multidimensional polynomials
previously not considered in the literature our investigation
starts from a reexamination of multidimensional stability
concepts from a fundamental standpoint. 1In chapter 2 it is
shown that all of the known results on stable
maultidimensional polynomials can be derived via the
elementary artifice of a continuity property of zeros of a
polynomial as a function of its coefficients. Several
previously unrecognized classes of multidimensional s:able
polynomials crucial to the transform domain description of
multidimensicnal passive continuous systems are identified
for the first time in chapter 3 by utilizing analytical
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techniques which are largely similar to those used in chapter
2. Certain theoretical results on the analysis of passive
multidimensional continuous systems are also derived here.
Synthesis of multidimensional structurally passive recursive
digital filters directly in the discrete domain form the
contents of chapter 4. Motivated by one-dimensional examples
such as the digital 1lattice filters and 1its potential
desirability in pipelined iﬁplementation, the further
topological constraint that the filter consist of cascade
interconnection of elementary passive building blocks is
imposed in the problem formulation. Necessary and sufficient
conditions for the feasibility of such synthesis are derived.
Since the design problems of many of the known
one-dimensional structurally passive filters can be viewed as
special cases of the results developed, new algorithms for
one-dimensional design fall out as a byproduct of this
discussion.

- More specific practical questions of image interpolation and
decimation are examined in chapter S by formulating the
problems in terms of frequency domain digital filtering.
Certain computational FIR-type structures are derived which
exploit full advantages of combined pipelineability and
parallelism when high speed hardware implementation of the
resulting filters are sought. Experiments with real as well
as synthetic two-dimensional data are reported.

Conclusions and recommendations for further research are
chalked out in chapter 6.

Each of the following chapters are self contained and can be
tead independently. For similar discussions in the open
literature we refer to the publications in (1), (2], [3] and
(4) in the following.
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CHAPTER 2

SIMPLE PROOFS OF STABILITY RELATED
PROPERTIES OF MULTIDIMENSIONAL POLYNOMIALS

2.1.Introduction

The criterion for bounded-input-bounded-output property of
multidimensional (k-D) 1linear shift invariant systems, when
the rational transfer function associated with the system
does not have non-essential singularities of the second kind
on the distinguished boundary of the polydomain under
consideration, is well established [1-5]. More specifically,
if the transfer function of a k-dimensional discrete time
system is given by H(z) as in (2.1), where

B(z) = A(z)/B(z) (2.1)

Alz) = Alz,25,...,2;) ,and B(z) = B{zy,25,...,2,) are
relatively prime polynomials in the k variables 2z =
(zl,zz,...,zk) then under the restrictive hypothesis that

A(z) and B(2z) do not have any common zero on the
distinguished boundary |zi| = 1, i =1 to k (also to be
denoted as {2] = 1 in the forthcomming discussion) of the
polydomain Izil <1, i =1,2,...,k (also to be expressed as
l2] € 1), the system produces a bounded output in response to
a bounded input if and only if B(2) is a strict sense
Hurwitz polynomial, i.e., (2.2) is satisfied.

B(z) » 0 for Jz| <1 (2.2)

Since for a given polynomial B(z) it is not possible to test
£or condition (2.2) directly, a number of alternative but
equivalent conditions, which are easier to test for, have
been derived by Strintzis, DeCarlo, et. al. [7] and others.a
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summary of all these results are available in the works of
Jury (8] and Bose (1]. A variety of different methods of
proofs of these results have appeared so far in the
literature. Strintzis in (6] uses analytic function theory,
DeCarlo et. al. uses homotopy theory expounded in Rudins book
(9]. It has been pointed out (1,10] that the results just
mentioned can be derived as special cases of Rudin’s theorem
(Theorem 4.7.2, pp.87 in (9]). Delsarte, Genin and Kamp [10]
have shown that all these results including Rudin’s theorem
can be proved via a number of elementary one-dimensional
(1-D) steps. However, the proofs given in [10] still require
the wuse of some function theoretic results, which may be
inaccessible to an engineering reader. The present report
deals with proofs of the above results , which are very
simple and highly intuitive as well. The technique dwells on
the fact that the zeros of a polynomial can be viewed as
continuous functions of its coefficients. A correct and
complete statement of this continuity property, which
includes all possible degenerate cases (although restricted
to polynomials in one variable), is available e.g. in [11]
(Theorem 4, p.l19, including footnote), (14] (§44), and [1l4a]
(p.200). . The technique has already proven to be a very
powerful tool in recent studies on passive multivariable
network theory (12]. A similar effort in this direction is
noted in (13]. Howev.r, (13] deals with the two-variable case
(k = 2) only, and a fully appropriate discussion of results
including all possible degenerate cases are not given.

A complete statement of the continuity property of zeros of a
5 multivariable polynomial as a function of its coefficients,
which includes all the degenerate cases, is given in Section
2.2. Section 2.3 contains proofs of the main theorems of
Anderson, Jury (16] and those due to Strintzis [6], DeCarlo
et al. (7]. Another result originally proved by DeCarlo,
Murray and Saeks (7] forms the main topic of discussion in
Section 2.4, where it is again shown that all related results

TN X RN '..;.'.\‘.\.‘-‘ N T, S N NN AT A N N .
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can be derived from the continuity property of zeros of a
polynomial as a function of its coefficients. In section 2.5
it is shown how the results of section 2.3 and 2.4, when used
with further continuity type arguments lead up to Rudin’s
theorem mentioned earlier. At this point a few
generalizations of Rudin’s theorem are also proven as
consequences of discussions of earlier sections of the
report. Finally, the report is summarized and conclusions are
drawn in Section 2.6.




2.2. Continuity property of the zeros of a polyaomial as a
function of its coefficients.

Due to the fact that the utilization of the aforementioned
continuity property in stability related problems in the
context of multi-dimensional polynomials is the main
contribution of this report and that a proper formulation of
the property needed for our purposes has not until recently
been known to be available, at least not in the engineering
literature, we undertake to give a brief exposition of the
result without giving any details of proofs.

The one variable version of the following result is well
known (11] in mathematical literature. For a proof see, for
example, [14]. Let g(2) « I A, 33 be a polynomial in 2 =
(24,29,...,2,), where N deX5¥es The set of k-tuples v such
that A, is not zero. Also let ||z||2 - |zll2 + |z2|2 + ...+
lzklz.-rhcn, if the coefficient Av are assumed to be variable
quantities with certain initial Values A, , and g,(z) be the
corresponding expression for g(z), the toT?owing two mutually
exclusive cases can arise:

(1) gyl2) is identically zero, i.e., A, =0 for all

0
¥o € N.

(2) go(z) # 0, i.e., there exists at least one v ¢ N
such that A30 A 0.
If in this latter case there exists a z, with finite ||z,]]|
such that g,(z,) = 0, then to any ¢ > 0 we can make
correspond a § > 0 such that for |A - A | < § , for all v ¢

N, there exists a value of z for which we have ||z - <

2q 1l
=0
€ as well as g(z) = 0. The proof of the above result follows
from its one-variable counterpart, and is available in [15].




For the present purpose, however, a different formulation of

the above principle proves to be more useful and is

elaborated upon next. Assume the A, for each v € N to be .
continuous functions of some vector t, say, A, = A (L)
Consequently, we can write g = g(2,t). Consider first a fixed

value t = t, of t such that g(z,,t;) = 0 for some z = z,.

Then one of the following two mutually exclusive cases must

hold true:

(1) A,(ty) = 0 for all v ¢ N, i.e., g(2,ty) = 0 for all
2= (23,290:4:,2).
(2) A(t,) # 0 for at least one v ¢ N.

In the latter case, if we move t along a continuous curve
from its initial value t,, it is possible to move also each
z, i =1 to k along certain continuous curves in their
respective 2z, - planes in such a way that g(z,t) = 0
continues to hold true, until a value t = t, of t is reached
sach that either A (t,) = 0 for all v ¢ N or, for t
approaching tg, |ziT + ® for at least one i in 1 < i ¢ k.
For k=1, this result amounts simply to a reformulation of a
corresponding result in (14a) (§39), and it can be easily
extended to the case k>1 by using the same simple approach as

in Appexdix 1 of [15]).




2.3. Simplified proofs of results of Strintzis [6) and

DeCarlo et. al. [7] and Anderson and Jury [16]

We will first need the following lemma.

Lemma 2.1: Let £(2) = £(2,,2,,...,2,) be a polynomial in z =
(2/25,...,2). Assume that there exists a 2z, =
(zIO'zZO""'sz) in lgolg 1 such that'f(go) = 0, and |z10| =
1 holds for v of the k variables z;, where v is any integer
0 < v < k-1. Then there exists a zp = (2],,255s--+25g) in
Igél < 1 such that f(gb) = 0 and |zi°| = 1 holds for at least
(v+l) of the 2{g- In particular, such a zero then exists
with Z{o = 240 for all those i for which 'ziol =1,

Proof: No loss of generality occurs in assuming that Iziol -
l for i = 1 to v . Let us freeze the variables z; at Z; = 25,
for { = 1 to v. If £(z) is independent of ‘at least one of the
variables z,,1 tO 2., say z,, then the proof is immediate by
choosing zio = 24y for i = 1 to k~1 and any zio with |z£0| =
l.

Next, assume that £(z) involves (i.e., actually depends on)
Z,_q 2nd z,. Let us now freeze the variables z; at z; = z,,
for i = 1 to (k-2), where thus |zi°| =] for { = 1 to v and
2,9/ < 1 for i= (v+l) to (k-2), and consider a continuous
path r, _, from 2k-1,0 leading up to the unit circle in the z,
plane. As Zy.1 is moved continuous;y along rk—l the variable
Zy can be moved along continuous path Iy starting from 210
such that £(z) = 0 remains satisfied. The only exception that
could arise is that for some z, ; = ay _, on T _,, with

@y _y1<1, the polynomial £, defined by L1020 1,2) )=
f(zIO""zk-z,O'zk-l'zk) is zero for all z,; the proof is
then completed by choosing z{, = z;,, for 1 < i ¢ k-2, 2x-1,0
- %y and any Zx0 such that Iziol = 1. If however no such
a1 exists, then by invoking the continuity property of
zeros of a polynomial, mentioned in Section 2.2, it follows
that either z, _, or 2, (or both) will reach the unit circle
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in the corresponding L plane. We would then have constructed
a zero 36 of £(z) such that lziol = 1 for at least (v+1l) of
the k variables z;-

We are now in a position to prove the theorem due to
Sstrintzis[6]) and DeCarlo et. al.[{7] mentioned earlier.

Theorem 2.2: If £(z) is a polynomial in 2z = (2,,2,,...2,)
then £(z2) ¥ 0 in J2|] < 1 if and only if the following
conditions simultaneously hold true:

(a) £(2) » 0 for |2| = 1, 1.e.,|zi| =1 for i =1 to k.

(b) if j is any integer in 1 < j < k, then £(2) ¥ 0 for
zi'*ij' i=1,2,...,(j-1),(j+1),...k, and |zj| < 1, where the
Vij's are some complex numbers wigh Irijl-l.

Proof: Necessity of the theorem is obvious. To prove
sufficiency let us assume that there exists a z, =
(2002307 -++2yq) With £(24) = 0, |2,4] €1 for 1=1 to k. In
view of lemma 2.1 we may assume that (k-1) of the k variables
(2y,25,...,2,) are located on the unit circles in the
corresponding zi-planes. A renumbering of the variables, if
necessary, will show that no loss of generality occurs in
assuming lziol = 1 for i = 1 to (k-1). Due to condition (a)
of the theorem, we then have lzkol < 1. This latter
conclusion , however, implies in particular that £(z) is not
independent of z) - Next we successively move the variables
z; i=1 to (k-1) from 2,0 t° Yik continuously along the arcs
ri of the corresponding unit circles. The variable z, may
then be moved along a path rk starting from Zy0 such that
£(z) = 0 remains satisfied. In this process it is impossible
to have f(z) = 0 for some z, = y;oonT,, 1 < i < k-1, and
all L because otherwise a contradiction with condition (a)
of the theorem is easily arrived at by choosing z, at any
point on the unit circcle 1zl = l. Invoking the continuity
property of the zeros of a polynomial, it then follows that




Iy can be chosen to be a continuous path in the zk-plane and
the process described above can only have one of the
following two outcomes. Either we reach z; = v;,, i=1t¢to
(k-1) with z, remaining such that |zk| < 1 or the path Ty
described by 2z, has at least one point in common with the
unit circle lzkl = 1. In the former case, the condition (b)
of the theorem is violated, whereas in the latter case the
condition (a) of the theorem is violated. The proof of the
theorem is thus complete.

Remark: The proof does not assume that £(z) is a polynomial
or that it is a holomorphic function. All that is required is
that the continuity property presented in Section 2.2 holds.
A similar remark holds for other results in this paper.

We next need to prove a result due to Anderson and Jury [16]
via the continuity arqument. We need, however, the following
lemma, which will also prove to be useful in other
developments to follow.

Lemma 2.3: Let £(2z) bé a polynomial in z2 = (zl,zz....zk) and
let the set of indices i = 1 to k be the union of two
disjoint subsets I, and I,. Then £(z) # 0 in |z| < 1 if and

only if the following conditions hold true sumultaneocusly:

(a) £(z) » 0 if Z, = a; for i ¢ 11; |zi| <1 for i ¢ I, where
the a;. for all i ¢ Il' are some complex numbers such that
|‘i| $ L. '

(b) £(z2) » 0 if lzil <1 for i ¢ :1; lzil =1 for i ¢ Iz.

Proof: Necessity is obvious. To prove sufficiency, let it be
assumed for contradiction that f(z) has a zero at z = z, =

(210'220"“zk0) with lgol € 1. By virtue of Lemma 2.1, no
loss of generality occurs in assuming that there exists a




fixed integer y such that |z”o| <€ 1 and that |zio| = 1 for
all other i ¢ (r, v 12). In view of condition (b) of the
present lemma, we must have in fact |z”0|<| and g ¢ 12. We
move the variables z; for i ¢ I1 from their initial locations
Z; = Z;9 On |ziol = 1 along continuous curves ri lying in the
respective unit disc Izil € 1 and leading up to the terminal
points 3 = 3y, while the variables z; for i ¢ 12, i # y are
held frozen at their corresponding values Z; = %0 The
variable z, can then trace out a contour r” in the z”-plane
so that £(2) = 0 is satisfied. Note first that as long as z;
is on ri for all i ¢ xl and z, = 34, for i ¢ 12\[y}, the
polynoaial (£(2) cannot be zero for all z, because otherwise
&n arcbitrary choice of z”.on lzﬂl = ] yields a value of the
k-tuple 2z with |zi| €1 for i ¢ I1 and lzil = 1 for i ch
such that £(z) = 0, which contradicts condition (b) of the
present lemma. However, with this alternative excluded, it
would be possible, due to condition (a) and the continuity
argqument, to arrive at the same unpermitted situation in a
way in which z, reaches a point with Izpl-l by moving
continuouslx along r” wvhile the z,. for i ¢ I remain on
their respective ri. :

Remark: If k=2 and 11-(1} and Iz-(Z) then lemma 2.3 coincides
with a result well known (see e.g., (2] and (13b]) in the
literature.

Corollary 2.3.1: Let £(2) be a polynomial in 2z =
(2y,25,...,2,). Then £(z) # 0 for |z| < 1 if and only if the

following two conditions hold true simultaneocusly:

(a) !(0,22.23,...,zk) # 0 for |zi| €1, i « 2 to k, where a
is some complex number with |a| < 1.

(b) f(zl,zz,...,zk) ¥ 0 for lzll < 1, and tz 1 = 1, i=l to k.

Proof: Follows from lemma 2.3 via the choice of I

1 " {1} and




I, = (2,3,...k}.

The proof of the theorem due to Anderson and Jury [16]
mentioned earlier is given next.

Theorem 2.4: If £(2z) is a polynomial in 2z = (2;,25,...,%))
then £(z) » 0 in |2| < 1 if and only if for some complex —
number a with |a]|<1l the following conditions simultaneously
hold true:

(1) £(z) # 0 for |z;] S 1, and |z4] = 1, J =2 to k.

(2) £(z) » 0 for z, = a, 251 S 1, and lzj| =1, j= v
3 to k. "

(3) £(z) ¥ 0 for z; = a, i = 1,2, |z4] < 1, and |z,| = .

J *; «“.
1, §j= 4 to k. —

. &

(k) £(z) # 0 for z, = a, i =1 to (k-1), [z, | < 1. I

Proof: Necessity is obvious. To prove sufficiency, let us
define the n-variable (1 { n ¢ k) polynomial B, from £(z) by
freezing each of the first (k-n) variables equal to a, i.e,,

' z, = a for i = 1 to (k-n). Note that By = £(z) and B, = S
| By(z,) = f(a,...,a,2,). We first claim that B, # 0 in |z;| ¢
| 1, for i = (k-n+l) to k for each n in 1 < n < k. The proof of r;‘f;
| this assertion is via induction on n. Dkl
Obviously, due to condition (k) of the theorem, B, = B,(z,) » : ﬁg;i
| 0 in |zx| ¢ 1. The assertion is, therefore, true for n = 1. . 3%
| Assume now that our assertion is correct for Bn i.e., Bn *;;;;

- Bn(zk-n+1""zk) ¥ 0 for Izil €1, i = (k=-n+l) to k. Note —_—

| that this implies B _,(a,2, . 1/c.2/2)) = B (2 /00002, ) # %ﬁhﬁ'
’ 0 for lzg1 < 1, i = (k-n+l) to k. However, ccndition (k-n) of Wit
(AT V-
| the theorem states that Bn+l(zk-n"“'zk) » 0 for 'zk-n' <1 jmﬁﬁg
and lzil = 1, i = (k-n+l) to k. The last two conditions, in )
R
\)_u‘ [}
PARACY:
bR
e
L
-15- 'y 6”‘% ]
M\ W)

s ump ey

: - » ) - s B
bR | () L i 'Y 1 7, L LIRS 7% ™
ML M SR CAZLAFIN DA R A P U MY LK LR DAY l';, LI R OO




view of corollary 2.3.1, imply that B ., » 0 forlzil €1, i =
(k=-n) to k. The proof of the theorem by induction is thus

complete.




2.4. Proof of a theorem of DeCarlo, Murray, and Saeks (7] and
its extension

In this section we undertake the proof of the theorem of
DeCarlo,et.al. [7] based on continuity property of zeros of
polynomials. We note that this theorem is not mentioned by
Scrintzis (6], and its proof in (7] makes use of homotopy
theoretic arguments. Subsequently it was pointed out [1,10]
that the result can be considered to be a special case of
Rudin’s theorem (9]. We will need to have the following lemma
as a preperation for our proof of the theorem.

Lemma 2.5: Let £(2) be a polynomial in z = (290295 00002y)
such that £(z) ¥ 0 for |z| = 1, and the set of indices i = 1
to k be the union of disjoint subsets of indices Il' I2 and
Is. If £(2) ¥ 0 in |zi| €1 for i ¢ Il' Izil =1 for i ¢ I,
and zZ; = vy for i ¢ 13, where the Yi's are some complex
numbers such that lril = 1, then we also have £(2z) ¥ 0 in
lzil <1 for i ¢ I |z£| = 1 for i ¢ Ié, and Z, = vy for

i ¢ I3, whe;e j is any integer belonging to I3, I3 = I,V
(3}, and 1} = I,\(}. |
Note that the lemma is meaningful only if I, is nonempty and
that we may also assume Il to be nonempty since otherwise the
result is trivial. However, 1, may be empty.

Proof: Let it be assumed for the purpose of contradiction,
that £(z,) = O,Iwhete 29 = (279029002 g) is such that
|210| €1 for i ¢ Il' |zio| = 1 for i ¢ Ii, and Z,0 = Y; for
i € I3. In view of Lemma 2.1 and the fact that f£(z) ¥ 0 for
(2| = 1 we may assume that for one of the i ¢ I,, say for i =
4, we have lz”o|<l and that lziol = 1 for all i ¢ Ii, where
I = I)\(w}.

Consider the polynomial fl(z”,zj) cbtained by freezing in

£(z) the rest of the variables as follows: 2, =z, for i €
Ij v I, and 2, =y for i ¢ 3. Clearly, fl(zuO' zjo) = 0,
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but by the hypothesis of the lemma we have fl(zﬂ,zj) ¥ 0 for
|z”| <1, zj = y. as well as for |z”|-|zj|-1. Consider then
a Qirected arc rj of the circle |z,| = 1 originating from zj
=- zjo and terminating at 2z, = y.. Obviously, for any fixed
z €¢ T, the polynomial fl(z”,zj) cannot be zero for all z,
because otherwise a contradiction with the fact that f(z) =
0 in [2| = 1 would immediately be arrived at by choosing zy
6o be arbitrarily located on |z”| = 1. By invoking the
continuity argument we can thus move 2. continuously on rj
from zjo towards y. and simultaneously move z, continuously
from 2,0 such that £1(z”,zj) = 0 remains satisfied. We will
then reach .a situation either with lzyl - |zj| = 1 or in
which |z”| <1, zj = vy which both have been seen to be
impossible.

The following -result is immediately obtained by repeated
application of Lemma 2.5.

Lemma 2.6: Let £(z) be a polynomial in z = (2;,25,...,2;)
such that £(z) # 0 for [z| = 1, and the set of indi 2s i = |
to k be the disjoint union of two subsets I, and I,. Then if
£(z) # 0 in |2;| < 1 for icI, and z; = vy for ieI: where the
yi's are some complex numbers such that Iyil = 1, then £(2z) =»
0 in |zil €1 for i ¢ Il, and |zi| = 1 for ieIz.

Note again that the set result is trivial if I is empty.
Lemma 2.7: The transformation

zi - (u-v)/(1-v"u), z, = (uev)/(1eviu) (2.3a,b)
has the following properties:

Property 2.1: If v = 0 then Z) =z, = u.

Property 2.2: If |u| = 1 and v is such that v" » +1/u, then
Izll - lzzl - 1.
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Property 2.3: If Ju|] < 1 and |v| < 1, then |z1|<1 and |z2|<1.

Property 2.4: For any z, and z, with |z1|<l and |22|<1 there
exist u and v with |u|l < 1, |v| < 1 such that (2.3) is
satisfied. (Note: (2.3) does not represent a simple

one-to-one transformation, but Property 2.4 is in a sense the
converse of Property 2.3.)

Proof: Properties 2.1 and 2.2 are easily verified. For
proving Property 2.3, consider any fixed v in |v| < 1. Then
2y is an analytic function of u in the domain ju] < 1.
ru:;hermore, from property 2.2, ]zll = 1 for all u on the
boundary |u| = 1 of the domain |u| < 1. Thus, maximum modulus
theorem implies that Izll < 1 for |u|l < 1. Ssimilar argquments
hold for Z,.

For proving Property 2.4, note first that if z, = 2, then the
proof immediately follows by choosing u =2, = 2, and v = 0.
Henceforth z,#z, will be assumed. By eliminating u from
(2.3a) and (2.3b) it follows that:

(1=1v1)2/2]v|=(z +exp(fa) ) (2 exp(-ja)=1)/(z;-2,) (2.4)
where v=|v|exp(ja).

We next claim that by choosing « properly the right hand side
of (2.4) can be made to be equal to a finite real and
positive number. To substantiate this claim consider the
angle vy defined by (zl+exp(ja))(zzexp(-ja)-l)- lclexp(jy).
Since Izll < 1 and |z2| <1, it is obvious that |c| » 0, and
vy is thus well defined. Furthermore, y satisfies (2.5).

exp(2iy) = [(E+z))/(1ez ©)IL(E-25)/(1-2,"£)]  (2.5)
where & = exp(ja)

Since the right hand side of (2.5) is the product of two




allpass functions of the variable § it is well known that as
« increases continuously by 2n, the angle associated with
each of the two factors also increases continuously by an
amount 2n. Consequently, y then also increases continuously
by an amount 2n, i.e., by proper choice of «,y can be given
any arbitrary value. The proof of our claim then follows
from the fact that ¢ is the angle associated with the
numerator of the right hand side of (2.4), and that the
corresponding denominator depends only on the given
quantities z; and z,. By solving (2.4) for |v| it then
easily follows that one of the two solutions satisfies
0<ivikl.

Finally, since (2.6) follows from (2.3), by using arguments
similar to

u = (z1+v)/(1+v'z1) - (zz-v)/(l-v*zz) (2.6)

those used in the proof of property 2.3, it follows that |v|
< 1 together with either lzll <1 or |zzl < 1, implies that
Ju] < 1.

We prove the theorem due to DeCarlo et. al. (7] next.

Theorem 2.7: Let £(z) be a polynomial in z = (zl,zz,...,zk).
Then f£(z) » 0 in |z| <1 if and only if the following
conditions hold true simultaneously:

(a) £(z) » 0 in |z| = 1
(b) f£(z) # 0 in |2z| < 1, where z, = z for each i=1 to k

First proof of Theorem 2.7:

We first provide a particlarly simple proof of theorem 2.7
for the two-variable case i.e., when k=2. Subsequently, it
will be shown via induction on k that if the theorem is true
for k=2, then it is true for any k. For all this, no use will
be made of the results ootained in Section 2.3,




Only sufficiency needs to be proved, the necessity being

obvious.

(i) k=2,

Consider the function h{(u,v) in (2.7) obtained from f(zl,zz)
via the transformation (2.3), where n,. and n, are degrees of
f(zl,zz) in z, and z, respectively.

n n
hiu,v) = (1-v'u) L(1+v'y) ° £lz,z,)  (2.7)

The function h(u,v) is not a polynomial in u and v, but may
be considered as a polynomial in u whose coefficients are
polynomials in v and v'. The coefficients just mentioned are,
therefore, continuous functions of v.

Property 2.1 of Lemma 2.7 along with condition (b) of theorem
2.7 then yields:

h{u,0)= £f{u,u)» 0 for ju| <1 (2.8)

Furthermore, it follows from property 2.2 and condition (a)
of theorem 2.7 that:

h{u,v) » 0 for ju|] =1, |v| <1 (2.9)

We next claim that condition (2.8) and (2.9) imply that
h(u,v) »¥ 0 for |u|] < 1 and Jv| < 1. To show this we assume
for contradiction that h(uo,vo) = 0 with luol <1, |v0| < 1,
Consider a continuous directed arc rv in the complex v-plane
originating from v=v, and terminating in v=0. For any fixed v
en T, h(u,v) cannot be zero for all u because otherwise a
contradiction with (2.9) would be arrived at by choosing u to
be arbitrarily 1located on |ju|=1. Furthermore, since as v
describes T,» u describes a continuous path in the u-plane,
it follows from (2.8), by invoking the continuity arqument,

that there must exist a v=vg on T and a corresponding u=uq
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with |u6|-1 such that h(u6,v6)-0, which again contradicts
(2.9), thus proving the claim that h(u,v)»0 in ju|< 1,]|v|<l.

If f(zl,zz)-o for some z1=2, and 2,=25, in |zll < 1 and |22|
< 1, then it follows that from (2.7) and property 2.4 of
Lemma 2.7 that there exists uqy and Vo in |u] ¢ 1 and |v| < 1
such that h(uo,vo)-o, which however contradicts the
conclusions of the last paragraph. Thus f(zl,zz)ﬂo in |z1| <
1, 122| < 1.

- a
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i, It only remains to show that £(z,,2,)#0 if one of the two
ﬁi variables z; and z, is strictly inside and the other on the
. corresponding unit circle. Assume e.g., f£(z;,,2,4)=0 for

% |z gl=l,1259] < 1. Then £(z,4.z,) cannot be zero for all z,
. because otherwise an arbitrary choice of z, on |zz|-1 would
ﬁk violate condition (a) of theorem (2.8). The continuity
E property of zeros then implies that by moving the variable z,
fﬁ from Z,=2,q to inside the unit circle by an arbitrarily small
amount it would be possible to construct a zero of f(zl,zz)
BN in lzll < l,lzzl < 1l, the impossibility of which has been
3 demonstrated in the previous paragraph.
W
(ii) k > 2.
ﬁ Assume for the purpose of induction that the theorem is true
;: for (k-1) variables, with k > 2, and consider the polynomial
5 fl(z,zk) of two variables Z,,29 defined as fl(z,zk) -

£(z,...z,zk). Then it obviously follows from condition (a) of
i Theorem 2.7 that fl(z,zk)ﬂ 0 for |z| =1 and Izkl -1,
; whereas condition (b) implies that fl(z,z)ﬂo for |z|] < 1. The
last two conditions, due to the proof already given for case
(i), imply that fl(z,zk)ﬂo for Jz| < 1 and lzk| < 1. In
particular, fl(z,zk)-f(z,...z,zk)ﬂo for |z|=1 and |:k| < 1.
The latter conclusion along with condition (a) and Lemma 2.6
imply that f(zl,zz,...zk)#o for |z ,|=1, i=i to (k-1) and Iz, |
< 1.
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Consider next the (k-1) variable polynomial defined as
£20(2,,25,...2, 1) = £(2,,25,...% 1,3, 9], where z,, is any
fixed complex number in Izkl € 1. It then follows that
fz(z,z,...z) ¥ 0 for |z| £ 1, because otherwise tl(z,zko) =
£(z,...z,zk°) would have a zero in |z{< 1, the impossibility
of which has already been demonstrated. Furthermore, from the
concluding sentence of the last paragraph it follows that
tz(zl,zz,...zk_l)#o for lzil-l, i=1 to (k-1). Therefore, by
invoking the induction hypothesis we can assert that
fz(zl,zz,...zk-l) #0 in Izil <1, i=1 to (k-1), which in view
of the fact that Zp0 is arbitrarily located in 2,1 <1, in
turn implies that £(z)#0 for |z] < 1.

Corollary 2.7.1: The polynomial £(z) in 2 = (2;,2,5,...2,) is
devoid of zeros in (2| < 1 if and only if the following

conditions simultaneocusly hold true:

(a) £(z) # 0 for |z|=1

(b) f£(g(z)) » 0 in |z]<l, where g(z)=(g,(2),9,(2),...9,(2)),
and each qi(z), for i = 1 to k are functions which are
analytic in |z|<l with the further property that they map
unit circles into unit circles and wunit discs into unit
discs.

Proof: Let wus note that any function qi(z) which maps unit
disc into wunit disc, wunit circle into unit circle, and is
also analytic in |z|<1 is a rational function which can be
written [19, p.12) as in (2.10), where the constants £ and
&y satisfy Iril-l. 'uivl<l'

Vi
2gmgg(uy)=vy 1

»
) (ui-aiv)/(l-civui),viZI (2.10)

Furthermore, we also have that:

(2.11)

<
s 1 for lui!

vEA
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Consider the polynomial g(u) in 2'(“1‘“2""“k)' defined as
in (2.12), where n; is the partial degree of £(z) in z;.

kv, - ng
h(u)=£(z) 0 X (l-aivui) (2.12)
i=lvel

Due to condition (b) of the present theorem it then follows
that h(u)#0 in |Ju[<l, where each u;,=u for i=1 to k.
Purthermore, it follows from equation (2.11) and condition :
(a) of the present theorem that h(u)#0 for |u|=1. Invoking
theorem 2.7 it then follows that h(u)#0 in |u|<l.

Next, consider any 5-(21,22,...zk) with |z|<1. For each
corresponding zZ; we can compute a u, by means of equation
(2.10) i.e., by solving an algebraic equation of degree vi>0.
Hence, we can find a u=(u,,uy,...u,) such that (2.10) is
satisfied, and due to (2.11), we then have |u|<l. Hence, it
follows from (2.12) that £(z)#0 for |z|<l.

Remark: We note that Theorem 2.7 is a special case of
Corollary 2.7.1 when the choice gy(z) = z for all i = 1 to k
is made.

The following multidimensional (k>2) versions of results
stated in [i0] and (1], respectively, follow immediately from
Corollary 2.7.1.

Corollary 2.7.2: = If f£(z) is a polyno-iai in z = (zl,
Z9,...+3,) then £(2) ¥ 0 in |z|] <1 if and only if the
following conditions simultaneocusly hold true:

(a) £(2) ¥ 0 in |2| = 1 P
(b) £(z) » 0 in |2| ¢ 1 with Z, = c;2 i, i =1 to k
where the ci's are some unimodular constants (i.e., lcil -

1), and the pi's are some positive integers (i.e., P; 0).

Corollary 2.7.13: Let f(z) be a polynomial in 2z =
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(zl,zi,...,zk). Then £(z) # 0 in |2] < 1 if and only if £(z)
¥ 0 for |z| < 1 with Z; = 2 exp (jﬂi), i =1 to k, where the
51'5 are arbitrary real numbers.

Remark: An alternative proof of theorem 2.7, which heavily
makes use of the results developed earlier in this report,
but does not necessitate the technique of induction on the
number of variables, can be formulated along lines explained
later. We first consider the following theorem.

Theorem 2.8: Let f(z) be a polynomial in 2z = (2,,2,,...2,).
Then £(2) # 0 in |jz|] < 1 if and only if the following
conditions simultaneously hold true:

(a) £(z) # 0 in |z|=1

(b) f£(z) = 0 for zj = a, and |zi| € 1 for i ¥ 3
where a is some complex constant such that |a| < 1 and where
j is some integer 1 < j < k.

(¢} £(z) # 0 if |2.] <1 and z; = v; for the indices i # j,

J
where the v;'s are some complex numbers such that lyil -1,

Proof: Necessity of the theorem is obvious. To prove
sufficiency we first note that no loss of generality occurs
if we assume j = 1. In view of Lemma 2.6, with I1 = {1},
conditions (a) and (c) of the theorem together imply that
£(z) » 0 -if |zll < 1 and |zi| = 1 for i = 2 to k. However,
this latter conclusion along with condition (b) of the
theorem, due to Corollary 2.3.1, implies that £(z2) » 0 in |z]|
< 1.

Second proof of Theorem 2.7:

Consider a polynomial g(u) in u = (u;,u,,...,u, ) obtained by
making in the polynomial f(2) the substitutions: Z = v and
z, = uu, for each i = 1 to (k-1). Conditions (2.13),(2.14)
then immediately follow from condition (b) of Theorem 2.7,



whereas (2.15) follows from condition (a) of Theorem 2.7 and
the fact that |u|=1 implies |z|=l.
g(ul,...,uk_l.O)-ﬁ(0.0,...O)#O
for all finite u;, i=1 to k-1 (2.13)

9(1""'1'“k) - f(uk,...,uk) ¥ 0 for luel €1 (2.14)

g(uy,...ou,) # 0 for |u] =1 (2.15)

Invoking Theorem 2.8 on g(u), with j=k, a=0, and Yi'l' i=1 to
k-1, it then follows from (2.13), (2.14), and (2.15) that
g(u) » 0 for |u| < 1.

We next note that |Ju|<l, thus £(2)=g(u)#0, if any of the
following conditions hold: (a) lz,1<1 and |z;|=1 for i=2 to
k, (b) zi-O for i=1 to j-1, lzjlil, and |zi|-1 for i=j+l to
k, where j is any integer such that 2<j<k-1, (c) zi-o for i=l
to k-1 and Izklgl. Hence, due to Theorem 2.4, £(z) ¥ 0 for
|zl £ 1, thus providing an alternative proof of Theorem 2.7.
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2.5. Proof of Rudin’s theorem and an Extension of Rudin's
Theorem

In this section we undertake the proof of Rudin'’s theorem
using continuity argument. A generalization of Rudin’'s
theorem is also reported. Our proof of Rudin’s theorem is
based entirely on continuity arguments and an application of
Corollary 2.7.2. Proofs previously reported in the literature
have been obtained by appealing to homotopy theory (9]. Our
extension of Rudin’s theorem is a further generalizatior of
the results discussed in (17] and involves a simple
application of our lemma 2.3 and lemma 2.6, along with the
Rudin’s theorem itself. We first state and prove the
conventional form of Rudin’s theorem for covenience of
exposition.

Theorem 2.9 (Rudin (1],(9]): The polynomial £(2z) in 2 =
(21,290...2) is devoid of zeros in |z| ¢ 1 if and only if
the following conditions simultaneously hold true:

(a) £(z) # 0 for |2] = 1

(b) £(g(z)) # 0 in |z | < 1, where g(z) -
(gl(z),gz(z),...gk(z)), and each gl(z), for { = 1 to k are
continuous functions of 2 with nonnegative winding
numbers with respect to the origin with the further property
that they map unit circles into unit circles, and unit discs
into wunit discs.

Note that this theorem reduces to corollary 2.7.1 if the
gi(z)'s are assumed to be analytic in |z|<l; indeed this
added assumption ensures that g;(z)’'s are all-pass functions
(i.e., wunit functions [(19])). A proof such as in [10],
however, is not fully correct because of the fact that if the
functions g;(z) are merely continuous the principle cof

argument may not be invoked. An approach modified wherever
required will therefore be used.




Proof: Necessity is obvious. To prove sufficiency, Let c; =
gi(l), and P; 2 0 be the winding number of 9;(z) with respect
to the origin for all i = 1 to k. Also, let ro and rl be the
contours described in the complex Biane s§fined ts:pectively
by the functions t(clz 1€3Z “s...Cpz ) and
£(gl(z),gz(z),...gk(z)), as the variable z describes the unit
circle 2 = exp(jO) beginning from © = 0 and ending in © = 2n
in the anticlockwise direction. Clearly, Iy and r, are closed
contours lying in the finite complex plane, each with the

same initial and terminal points at £(°1'°2"'°°k)'

We first claim that the number of encirclements of the origin
of the complex plane by the contours ro and r1 are the same.
To prove this assertion we define the functions v;(8) for 0 ¢
® < 2x as: v - arg(gi(oxp(je)) for each i = 1 to k. Note
that since each gi(z) is a continuous mapping of the unit
circle into the unit «circle, v;(€)'s are continous
functions of 8, and we can also write:

gs(exp(38)) = exp(§v,(8)) for i = 1 to k (2.16)

In particular, we have (2.17a), whereas (2.17b) follows from
the fact that the winding number of gi(z) with respect to the
origin |is Py for each i = 1 to k. Consider next a complex
valued function h(t,0) defined for 0 < t <1, 0 < @ < 2n as
in (2.18), where the $;(8)'s in (2.18) are as defined in

(2.19).
cy = 91(1) - Oxp(j*i(O)). v,(2r) = 2upt + ¥, (0) (2.17a,b)
h(t,8) = 2(01(9).02(9)....¢k(9)) (2.18)
01(6) - exp (jtwi(e) + j(l-t)(wi(O) - pie)) (2.19)

for each i = 1 to k.
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Subtituting t=1 in (2.19) and subsequently making use of
(2.18) and (2.19) we have h{(l1l,6) = f(gl(z).qz(z)....gk(z))
with 2z = exp(jo). Similarly, Ly substituting t = 0 in (2.19)
and subsequently makinsluse 8§ (2.18)p£2.19) and (2.17a) we
obtain h(0,6) = f(clz 1€32 Ts...0p3 ) with z = exp(je).
Also, it follows from (2.17),(2.18) and (2.19) that h(t,0) =
h(t,2n) = f(°1'°2"“°k) for all t in 0  t < 1. Furthermore,
since the v;(@)’s are continuous functions of 6, and £(z) is
a polynomial and hence a continuous function of 2z =
(zl.zz,...zk), it follows in view of (2.18) and (2.19) that
h(t,8) is a continous function of ¢t and 6. The function
h(t,8), when viewed as a function of 6 only, can therefore be
thought of as representing a family of closed contours with
their initial and terminal points fixed at f(cl,cz,...ck),
which are continously parametrized by the variable t in such
a way that we obtain ro when t = 0 and r1 when t = 1, In
addition, since it follows from (2.19) that |¢i(e)| = 1 for
each i, we have from condition (a) of the present theorem
that h(t,8) = 0 for all 0 < t <1, 0 < & < 2n. Therefore, the
function h(t,9) can be taken to represent a continuous
deformation of the contour ro into rl with the initial and
terminal points fixed at f(cl,cz,...ck) such that at any
intermediate stage of the continous deformation process the
contour may never pass through the origin (0,j0) of the
complex plane. 1It, therefore, follows that the number of
encirclements of the origin (0,3j0) by Ty and T, are the

Next, by wusing arguments similar to the one used above we
show that the number of encirclements of the origin by the

1

This intuitive notion is more formally expressed by saying
that if ro and rl are Q—homotopy of each other then they are
Q-homologous (theorem 13.1S5 in [18])). Here, 2 is the set of
all complex numbers except the origin (0,j0).
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contour rl is zero. Consider the family of circles described
by the complex function k(r,s) of real variables r,s ¢ [0,1]
defined as k(r,s)=rexp(2njs). Also, consider the function
K(r,s) - f(g(k(r,s))). Then K(1,s) describes rl and
K(0,8)=£(g(0)) for all s. Thus, if r changes from 1 to 0, the
contour T described by K(r,s) for s € [0,1]) contracts
continuously from l'1 into the point £(g(0))=0. Hence the
number of encirclements of the origin must be zero for T
sufficiently close to 0, and it must therefore be equal to
zero also for r=1, because due to condition (b) of the
present theorem I never goes through the origin for r ¢
(0,11.2

Thus the number of encirclement of the origin by the contour
Ty is zero. Since Ty is the image of the unit circle |z|=1
due P to the Bapping defined by the function

P
t(clz l,czz 2,...ckz :), itpfollows By using the principle of

argument that t(clz 1,czz 2,...ckz k) # 0 in |2] £ 1. Since
Py 2 0, and from (2.17a) we have that lcil = Igi(l)l = 1 this
latter statement along with condition (a), due to Corollary

2.7.2, completes the proof the present theorem.

Before we can undertake the proof of the extended version of
Rudin’s theorem reported in [(17], we need the following
lemma.

Lemma 2.8: Let f£(z) be a polynomial in z = (2,,2,,...2,) such
that £(2) # 0 in |2| = 1. Also, let the indices i = 1 to k be
the union of disjoint sets of indices J,, J, and J;. If £(2)
satisfies: (a) f£(z) =# 0 for lzil <1, i ¢ Jl; 2, = a;, ice
(J U J3), and (b) £(2z) # 0 for all z with 2z, = 8, for i ¢
Jl z, = gi(z) for i ¢ Jz and |z]<1, and 2, = v for i ¢ I3,

where the qi(z)'s are functions satisfying the same

ZThis step does not indeed follow from the principle of

argument.
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conditions as those in Rudin’s theorem, and the « 5.,71'5

i’ Fi

are some complex numbers such that |ai| - Iyil = 1 and 'Bi| <
1, then £(z) # 0 for Izil <1, i ¢ (J1 4] Jz); Z; = vy ise

J3.

Proof: Since f£(z) # 0 in |z| = 1, invoking Lemma 2.6 along
with condition (a) of the present lemma yields that:

£(z)#0 for lzi|51, ich; Izil-l, ie(J2 U j3) (2.20)

Condition (2.20) implies, in particular, that £(z) # 0 for z;
= 61, i ¢ Jl; |31| =1, i ¢ Jz and Z; = vy ie J3, which
along with condition (b), due to Rudin’s theorem, implies
that £(z) = 0 for z;, = 51' ice Jl' |zi| <1, 1 € Jz and z, =
Yy i € Jgy. This latter conclusion, along with a
particularization of (2.20) via the choice of Z; = vy ice

J3, due to Lemma 2.3, yields the desired result.

We can now prove the generalized version of Rudin’s theorem
stated as follows.

Theorem 2.11: Let the set of indices i = 1 to k be the union
of n disjoint subsets of indices Ij' j =1,2,...n. Then the
polynomial £(z) in z = (zl,zz,..zk) is devoid of zeros in |z]
€1 if and only if the following hold true simultaneously:

(a) £(2z) # 0 in |z2| = 1

(b) for each wy, w =1,2,...n, the polynomials obtained by
setting Z; - ai”, ice Ij, j =1 to (u=1); z, = gi”(z), i e I”
and TR P ice Ij' j = (u+l) to n in £(2) are devoid of
zeros in |z| ¢ 1, where the gi”(z)'s are functions satisfying
the same constraints as those satisfied by the gi(z)'s in

Rudin’s theorem, and the Bi”

numbers such that lsiyl < 1 and |yi”| = 1.

*s and v;,'s are some complex




Proof: Only sufficiency needs to be proved. We claim that for
all minl <m <n tne polynomial By obtained by freezing z;
aﬁ Z; = Yim’ ie ' U I. satisfies Bm # 0 in |zi| €1, i ¢
U 1I.. cThe proo?'gflthis assertion is via induction on p.
dThce B, is obtained from f(z) by setting z; = v;;, i 5 U
Ij and 'Yill = 1, it follows from condition (a) that Bl 1'6
for |zi| =1, ic¢ Il‘ Furthermore, condition (b) with 4 = 1
implies that B, # 0 in |2] € 1 with z; = gil(z), ie I,. The
last two conditions, in view of Rudin’s theorem, prove that
Bl # 0 in lzil €1, 1ic¢ Il. Therefore, our assertion is true
for m = 1, We next assume that the assertion is true far m,
with 1 < m <« n-1, i.e., £(2) # 0 for lz;1 < 1, i ¢ U 1,

and z; = vy, , i ¢ U I.. Applying Lemma 2.8 on £(z2) ;TEh
im j z
jmm+l
m n
J; = 4] Iy 39 = Ip41r I3 = u I. along with condition

(a) andIZdndition (b) of the pressBtllemma, with = p+l, it

directly tollowﬁ that £(z) = 0 in |zi| <1 forie U I,; z;
ie U _ I, Therefore, B_, # 0 in [z,|)31,
jem+2

® Yi,mel?

m+1
i ¢ U I.. The proof of our assertion via the induction is

thus céﬁblete. The theorem then follows by noting that Bn and
£(z) are identical in all the variables z;, i = 1 to k.
Remark: We note that Rudin’s theorem is a special case of
Theorem 2.11 when n=1. Also if si”-si for all 4 then we
obtain the extension of Rudin’s theorem reported in (17]. In
this sense Theorem 2.11 can be considered as a slightly
generalized version than that reported in (17].

As a corollary to the above theorem, we have the following
result reported in [20].

Corollary 2.11.1: The polynomial f(2) in z = (zl,zz,...zk) is
devoid of zeros in [2]| < 1 if and only if the following hold

true simultaneously.

(a) £(z) # 0 in |z] = 1
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(b) for each 4, uy =1,2,...k, the polynomials obtained by

setting z, = 51, i =1 to (u-1), z; = 2, i =y, and z, = Yige
i = (pu+l) to k in £(z) are devoid of zeros in |8| < 1, where

-

51'5 and yi's are some constants such that lﬁil < 1 and

l71”| = 1.

Proof: The proof of the above corollary clearly follows from
Theorem 2.11 by choosing n = k, Ij = {j} for j = 1,2,...k,
31”-61 and gi”(z) = z for each i and y.

Remark: It is possible to formulate a more direct proof of
Corollary 2.11.1 without making use of the Rudin’s theorem
via the use of Lemma 2.3, Lemma 2.6 and a strategy similar to
the one adopted for the proof of Theorem 2.11. However, the
details of such a proof 1is omitted from the present
discussion for the sake of brevity.

Also note that if 8 = 0 for all i, and Yig ” 1 for all i and
4 then Corollary 2.11.1 coincides with a result stated and

proved in Theorem 2.4 in (7].
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2.6. Conclusion

A correct formulation of the continuity property of zeros of
a multivariable polynomial as a function of its coefficients
has been discussed. This property has been used to derive all
the conditions for a polynomial f(z) in z = (z1'22""'zk) to
be devoid of zeros in jz| < 1 previously known in the
literature. The proofs presented here are believed to be
simple, rigorous and more intuitive than those published
earlier. The present report deals with results arising from
studies of bounded-input-bounded-output property of
multidimensional discrete time systems only. It is well known
(1,10] that wunlike in'one-dimension, the obvious continuous
domain analogs of certain discrete time domain results do not
hold true unless proper modifications necessitated by the
non-compactness of the right half polydomain are duély made.
The proofs of these results in the multidimensional (k>2)
context based on the continuity property of the zeros of a
polynomial as a function of its coefficients can also Le
worked out along lines similar to those discussed here. This
discussion will be the content of a forthcomming report [21].
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CHAPTER 3

NEW RESULTS ON STABLE MULTIDIMENSIONAL POLYNOMIALS

3.1. Introduction

Recent studies on the scattering parameter description of
passive multidimensional systems have given rise to a new
class of aultidimensional Hurwitz polynomials, called

scattering Hurwitz polynomials, by allowing zeros of
testricted nature to occur on the boundary of the domain
under consideration (1]. Originally, two different
definitions of these polynomials were introduced, the
equivalence of which has been demonstrated via an extension
of the maximum modulus theorem for analytic functions of
several complex variables (2), and some of their properties
have been discussed in (3]. Nontrivial properties of
scattering Hurwitz polynomials occuring in discrete time
domain applications are considered in (4] and their testing
procedures are elaborated in the two-dimensional context in
(S51]. An alternative approach to deriving the basic
properties of scattering Hurwitz polynomials has also been
offered [6]. The present report, however, will be organized
such that all proofs are complete without requiring any
knowledge of (6].

The aforementioned investigation is carried further in the
present report by classifying a wider variety of
multidimensional polynomials occurring in transfer function

descriptions of passive systems. Whereas the scattering
Hurwitz polynomials occur as the denominators of bounded
functions, reactance Hurwitz and immittance Hurwitz

polynomials, as defined later, are <characterized as the
denominators (and hence the numerators! of reactance
functions and immittance functions respectively. Related
other results on properties of multidimensional polynomials
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and rational functions are discussed in this context. Some
related investigations in (7] have been brought to the
attention of the authors.

Notations, terminologies and definitions and some general
properties of multivariable polynomials to be used in the
rest of the report are introduced in Section 3.2. Properties
of widest-sense Hurwitz polynomials and self-paraconjugate
Burwitz polynomials are discussed in Section 3.3. Properties
of scattering Hurwitz polynomials previously unpublished in
the literature are discussed in Section 3.4. Section 3.5
deals with properties of positive functions, whereas the
reactance Hurwitz and immittance Hurwitz polynomials are
defined and their properties studied in Sections 3.6 and 3.7

respectively. In Section 3.8 a few results potentially
useful for testing the positivity property of
multidimensional rational functions are derived. A

nontrivial result concerning the property of nonnegativity of
the real part of a rational function, analytic in the right
half-polyplane, in terms of the behavior of the function on
the distinguished boundary of the domain of holomorphy is to
be noted in this connection. Finally results obtained are
summarized, and conclusions are drawn in Section 3.9.
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3.2. Notation, terminology, definitions and general
properties of multivariable polynomials.

The following is a partial glossary of notations and
terminologies to be used in succeeding discussions.

A polynomial g in k variables PyrPgre-<Py will be denoted
simply by g or g(p;,pPy,...Py) or by g(p), where p denotes the
k-tuple of variables p = (91'92"‘°pk)' We will also write g .
= g(p) or g = g(pl,pz,...pk) to indicate that g is a
polynomial in k-variables. We take for granted that a
polynomial g in k variables may be independent of one or more
of the wvariables PysPgres Py The k-variable polynomial g
will be said to involve a variable P if the indeterminate P;
actually exists in at least one of the monomials composing
the polynomial gq. If g = g(p) involves P; then the (k-1)
variable polynomials obtained by assigning arbitrary values
to p; cannot all be identical. A polynomial g = g(p) will be
called nonconstant if g involves at least one of the

variables Py+Pgsee Py The set of integers 1 to k will be
designated by I 4i.e., I = {1,2,...k}. By Li0ig000.iy we
designate a permutation of the integers 1,2,...k. A

nonconstant factor of the form d° where v is an integer > 2
is said to be a multiple factor, and a nonconstant factor
that is irreducible is called an irreducible factor.

If g = g(p) is written as a polynomial in P; iel, as

Ny
v
v=(
where the coefficients A, are polynomials in the remaining

variables, with A, A 0, then n, is called the partial degree
of g in the variible P and is to be denoted by degig. Two
polynomials will be said to be relatively prime if they do

not have a nonconstant common factor. The terms factor
coprime and proper factor are also to be used respectively




for the terms relatively prime and nonconstant factor. lgﬁf

The asterisk *, when used as a superccript along with any
scalar expression (or a constant), will indicate complex
conjugation. The paraconjugate of a polynomial (also of a fy}
rational function) g is defined as: g, = g, (p) = e
g*(-p;,-p;,...—p;). A polynomial g is said to be self-
paraconjugate if g,= Cg, where C is a constant (necessarily

unimodular, i.e., |[C|=l). g is said to be paraeven or :Q%E
paraodd if C = 1 or C = -1 respectively. Sometimes it will ,éﬁ?

be appropriate to write the k-tuples p as: p = (py,p’),
where p’ indicates the (k-1)-tuple p’ = (pz,p3,...pk).
Correspondingly we will also write: g =g (py/p'). A $ﬁ;
polynomial £ in the variables P2+P3s-- Py will be expressed ﬁﬁ}
as £ = f(pz,p3,...pk) or equivalently as f = f(p’). For any v
specific iel, we will use the phrase "(k-l)-variable

' i'\ifb

polynomial obtained by freezing the variable p, in g(p)" to ¥r§
L3

mean the (k-1) variable polynomial obtained from g(p) by ?ﬁ&

assigning a fixed value to P;- A second subscript to the
variables Py 1 ¢ i < k such as Pio’ will usually mean a -

fixed value of P;- Correspondingly the notations B = Ny
(Pyg+Pygs---Pxg) 3and Py’ = (Pyq/P3qr-+-Pxo) etc. will be ﬁﬁi%
used. The notation Rep > 0 (or Rep’ > 0) will be taken to haRhL
mean Rep, > 0 for all ier (or, ie{2,3,...,k} “J
correspondingly), etc. (all p, involved being obviously ;fﬁﬁ
assumed finite). The symbol w will be used exclusively for ' "Qg
designating real numbers. Thus, notations such as Py = ’“i Zzii
and Piog ™ 3”10 imply that Rep, = 0, Rep.q = 0 respectively. —
Similarly w is wused for the k-tuple of real numbers ﬁ@:
(wg,wy,c000), i.e., p = jw implies Rep = 0 etc. Wherever e
appropriate, definitions and notations discussed so far also XN
apply if q is more generally a rational function in p. The s
notation ||.|| denotes any suitable norm, say, the Euclidean A;ﬂ
norm, k i
pl1? =z ip 1l P

i=1 o
A

N

o
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Let P be a set of k-tuples p = (pl'pZ""pk)' where all P
belong to the same number field K (hereafter always the field
of real numbers or the field of complex numbers). We will
say a certain property holds for almost all values if a
variable may be equal to any element of the field except,
possibly, (finitely many of them. The set of all values that
the variable may then take is said to be almost complete.
The symbol Q will be reserved to denote the set P when the
variables are restricted to be real.

Definition 3.2.la: We say that P is a sequentially almost
complete set of order ma > 1, withm < k, if there exists a
permutation 11,12,...,ik of the integers 1,2,...,k such that
all p ¢ P can be generated in the following way: There
exists an almost complete set K, <K such that any P; € K, may
be chosen. For any choice thus made, assuming m i 2, there
exists an almost complete set chx (possibly depending on the
particular P t K, selected) such that any Py ¢ K, may be
chosen. Again for any choice thus made, asguming m 2 3,
there exists an almost complete set K3<K (possibly depending
on the particular Py and Py selected) such that any Py €
Ky may be chosen, elc. If i = k this process is continaed
until we have reached Py -

Ift m < k, once we havokreached i. there exists at least one
(k-m)~-tuple (py resePy ) (possibly depending on the
particular Py to'ﬁi sclcétod) that may be chosen. Finally,
we may cxton& the aBove definition to the situation m = 0 by

saying that in this case the set P is not eampty.

Definition 3.2.1b: P is sequentially infinite of order m,

1 ¢ m < k, if it can be generated as in Definition 3.2.1a
except for replacing everywhere the term "almost complete
set"” by the term "infinite set”,.

Note: In Definitions 3.2.la and 3.2.1b, the permutation




(11,12,...1k) will be called the ordering of P. 1If 1” -y,
g =1 to k, then P is said to be ordered naturally.

Definition 3.2.1c: P is sequentially exceeding n =
{n,,n5,...0,) with order m, where m < k, if it can be

generated as in Definition 3.2.1a except that the terms an
almost complete set K, <K " etc. are replaced by "a set K.cK
comprising at least n; + 1 elements” etc., the n,, i=1to
k, being finite, nonnegative integers.

An obvious interrelationship between the sets defined above
is also summarized in the following theorea.

Theorem 3.2.1: A sequentially almost complete set of order m
is also sequentially infinite of order m, and a set of the
latter type is sequentially exceeding n = (nl,nz,...nk) with
order m, and this for any choice of the n.

Definition 3.2.1d: P is almost complete of order m, infinite
of order m, or exceeding n = (“1L92""“k) with order m if
PeP) xPy x...P, the sets Py i =1 to k, being non-empty
and such that at least m of them are almost complete,
infinite, or contain a number of elements larger than the
corresponding integer n;, respectively, where m ¢ k.

Some properties of the type of sets just defined, as they
relate to the sets defined earlier in Definitions 3.2.1a,
3.2.1b and 3.2.1c are mentioned in the following.

Theorem 3.2.2: A set, P,of k-tuples, p, that is

1. almost ‘complete of order m is sequentially
almost complete of order m,

2. infinite of order m is sequentially infinite of
order m,
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3. exceeding 2"“1'"2"""k) with order m is sequentially
exceeding n = (n;,n,,...n. ) with crder m.

Proofs of these results clearly follow from a close
examination of the definitions of the sets involved.

For the purpose of the present report we will also adopt the
followirg definitions. More definitions and terminologies
will be introduced as they occur in the main body of the
text.

Definition 3.2.2: A polynomial g = g(p) is widest-sense
Hurwitz if g(p) # 0 for Re p > 0. - -

Definition 3.2.3: A polynomial g = g(p) is strict-sense

Hurwitz if g(p) 2 0 for Re p 2> 0.

Definition 3.2.4: A polynomial g = g(p) is scattering

Hurwitz if the following conditions simultaneously hold true:

(i) g(p) # 0 for Re p > 0, i.e., g is widest-sense
Hurwitz

(3.2)

(ii) g and g, are relatively prime polynomials.
(3.3)

Definition 3.2.5: A polynomial g - g(p) is a
self-paraconjugate Hurwitz polynomial if it is a widest-sense
Hurwitz polynomial and is self-paraconjugate.

Definition 3.2.6: A polynomial g = g(p) is reactance Hurwit:z
if it can be written as a constant (possibly complex)
multiplied by the paraeven or paraodd part of a scattering
Hurwitz polynomial.
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Definition 3.2.7: An immittance Hurwitz polynomial is the
product of a scattering Hurwitz and a reactance Hurwitz
polynomial.

Definition 3.2.8: A function F(p) 1is called a positive
function if Re F(p) 2> 0 everywhere in Re p > 0, where F is
holomorphic.

The positive function F = jC, where C is a real constant is
said to be trivial. All other positive functions are non-
trivial.

Definition 3.2.9: A paraodd rational positive function is
called a reactance function.

Note that the Definitions 3.2.8 and 3.2.9 do not assume the
function under consideration to be a real function.

Theorem 3.2.3: If g(p) is a polynomial in k-variables such
that the set of zeros of g comprises a sequentially infinite
set of order k, then g is identically equal to zero. More
generally, let n, = degig , i =1 tok. If g =0 for all

p ¢ P, where P is sequentially exceeding n =(n;,ny,...np)
with order k, then g is identically equal to zero.

Proof: Assume that a set P of the type mentioned exists, but
that g x 0. We may assume 'P to be ordered naturally.
Consider g as a polynomial in p’, the coefficients A,(p;) of
which are polynomials in P only; the A, are of degree < n,.
Obviously, there exists a v’ such that Ay, (py) A 0. Hence,
among the values of Py to be considered for forming P, there
must exist at least one, say Pyg- with Av, (plo) 2 0. The
polynomial 9y defined by gl(g') = g(pyg/R’) is then not
identically zero.

Next, we proceed with g, as before with 3 i.e., consider 9,
as a polynomial in (p3,p4,...pk) the coefficients B,(py) of
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which are polynomials in P, etc.... Finally, we arrive at
g(py) 0 where p, ¢ P. This, however, is a contradiction.

Lemma 3.2.4: For any non-constant polynomial g, there exists

a sequentially almost complete set, P, of order (k-1) such
that g(p) = 0 for all p ¢ P.

Proof: We may assume that g involves Py- Freeze p, at p,,
and consider the polynomial g, defined by g;(p’) = g(p;4.R')-
Since the coefficients of g, are polynomials in Pig’ there
are at most finitely many values of P1o for which gl(g') is
independent of Py- For any other choice of Pyo Ve may apply
the same argument to g, as formerly to g, with Py taking the
tole of P, etc. Finally, we find a polynomial 9 _1(Py) that
still involves Pk and thus has at least one zero.

Theorem 3.2.5: If f and g are polynomials in k variables

MM I LN

then £ and g have a proper common factor if and only if the
set of zeros that are common to f£f and g is sequentially
infinite of order (k-1).

Proof: Necessity 1is obvious in view of Lemma 3.2.4. To

prove sufficiency, let P be the set mentioned in the
statement of the theorem and assume that Py is the last
variable selected in forming P, i.e., in the terminology of
Definition 3.2.la, that we have ik = 1. Let P’ be the set of
(k=1)=-tuples p’ involved in .forming P. There exist
polynomials u,v and w such that uf + vg = w, where w=w(p’) is
a polynomial independent of Py deg1 u < degl g and degl v <
degl £; a polynomial w thus defined has the property that w =
0 holds if and only if £ and g have a common proper factor

involving Py (8]. Furthermore, since P’ is sequentially
infinite of order (k-1) it is clear from Theorem 3.2.3 that
w(p’) is actually identically zero, i.e., that f and g have

indeed a common factor.
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Lemma 3.2.6: Let g be a polynomial in p. Let us select one

of the P;+ Say Py, and let us freeze Pi at say, Pirg-
There exist at most finitely many choices of Pirg such that
any partial degree of g is lowered.

Proof: We may assume i’ = 1. Write g as a polynomial in p'’
whose coefficients are polynomials in P;- Clearly, there are
at most finitely many values of Pi1g such that the leading one
of these coefficients becomes zero.

Theorem 3.2.7: Let £ and g be two relatively prime
polynomials. For any m such that 1 < m < k let us freeze m
of the wvariables P;. say for i = il to im' at corresponding

values Pio- Let £, and g, be the resulting polynomials in
the remaining variables. Then there exists a sequentially
almost complete set P of m-tuples of order m such that for
P; +Py_ +---P;y ) € P, the polynomials £, and g, are still
relégiveig p:ime?o Furthermore, for any ordering chosen there
exists a set P with the property given.

Proof: It is enough to prove the theorem for m = 1 and to
assume’ that the variable to be frozen is Py - Define u, v and
w as for the proof of Theorem 3.2.5, and let Uy, vy and Wy be
the polynomials resulting from the former set of polynomials
by freezing Py 2t Pyg- Clearly, w is not identically zero,
and there are at most finitely many values of Pxo for which
at least one of the relations deqlf1 < deglf, deglgl < deglg
(cf. Lemma 3.2.6) or wy(py,...Pp_ ;) ® 0 could hold. For all
other choices of Pxo the conditions for ensuring that fl and
=2 have no common factor involving p, are fulfilled. 1In a
similar way one can show that there are at most finitely many
Pko for which fl and 9, have a common factor involving any of
the variables p, to p,_,.

Theorem 3.2.8: For any polynomial g that is not identically
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zero there exists a set, P, of k-tuples p, that |is
sequentially almost complete of order k and such that g(p)x0
for peP. Furthermore, a set P with the given property exists

for any choice of the ordering of this set.

Proof: It is sufficient to assume natural ordering. Let 9,
be the polynomial in p’ obtained by freezing P, at Pygq- i.e.,
gl(p') - g(plo,p'). The coefficients of g, are polynomials
in Pio- Hence, gl(p')ﬂo for almost all choices for Pyg- For
any of these, we may apply the same argument to g, as before
to g except that P, now plays the same role as Py had etc.
Finally, we arrive at a polynomial Iy_1 that depends on Py
alone and 1is not identically zero, which is thus different
from zero for almost all Py -

Theorem 3.2.9: If a polynomial g is devoid of zeros in the
region Rep > 0 as well as in the region Rep < 0 then g is a
nonzero constant.

Proof: If g is not a constant let wus assume that it
involves, say, the variable Py- Let A be the leading
coefficient of g when writing it as a polynomial in Py’
clearly, A is a polynomial in p’ and is not identically zero.
According to Theorem 3.2.8 there exists a sequentially almost
complete set, P’, of (k-1)-tuples such that A(p’) » 0 for
p'eP’. Hence, we may consider a fixed value By = jgb such
that go(pl) - g(pl,jgé) still involves P;- Then there exists
a P, = Pyg such that g(plo.gb) = 0. This, however, leads to
a contradiction, because both Rep,, 2 0 and Rep,, ¢ 0 are
impossible due to our hypothesis.

Theorem 3.2.10: Let g be a polynomial in p and assume that
there exists an i’e I and a fixed value Py such that g(p)=0

if P Py and the remaining P take any arbitrary value
belonging to a sequentially infinite set of order k-1. Then
g contains (p~po) as factor.




r‘F

Proof: We may assume i’=1. Write g as a polynomial in p’
whose coefficients are polynomials in py- In view of Theorem
3.2.3, with k replaced by k-1, all these coefficients are
zero for P;=Pq-

Theorem 3.2.11: If g(p) is a polynomial and g(go)¢,0 for
some p, then there exists an n > 0 such that g(p) # 0 for all
P in the neighbourhood llg-goll < n. More generally, for any

€ < 0 there exists an n > 0 such that |g(2)l>|g(go)| - ¢ for
|P=Rg | <n-
Proof: Since g is a polynomial and hence a continuous

function of p, for any given € > Q there exists an n > 0 such
that for all p satisfying ||2-20]| < n we have that
Ig(p)=g(py) | < €., i.e., |g(R)I>|g(py)l-€, thus |g(p)|>0 if we
choose c<|g(go)|.

Theorem 3.2.12: Let g be a polynomial in p having a zero at

Po- Let U be any neighborhood of p,. There exists a
sequentially infinite set PcU of k-tuples p that is of order
k-1 and such that g(p)=0 for peP.

Proof: Since any polynomial can be decomposed into a product

of irreducible factors, it is sufficient to assume that g is
irreducible. On the other hand, the result is true for k=1.
Assume thus that it holds for k-1, we will show that it
remains valid for k. For this, consider g as a polynomial 9

in p’ whose <coefficients are polynomials in P, and write
Ro=(P19+Rg' - In view of Theorem 3.2.10, g; cannot be
identically =zero for P1"Pjo since otherwise g would not be
irreducible. Hence, we may move p, from p,, to a position
P11 close to P1g- apply to 91 the continuity property of the
zeros of a polynomial in several variables (2], and conclude
that there exists a Ry’ such that gl(gl’)-o for P;*P;;- BY
assumption, thete exists thus a sequentially infinite set P’
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of (k-1)-tuples p’ that is of order k-2 and such that
g,(p’)=0, thus  g(p,,p’)=0, for p’eP’ and  p,;=p;,-
Furthermore, for any P11 sufficiently close to Pyg 20Y
corresponding value p’ then resulting in the way just
explained is such that (pll,g')eu. Hence, a set P as
required does indeed exist.

This —result together with The.rem 3.2.5 yields immediately
the following corollary:

Corollary 3.2.12.1: Let g and h be two relatively prime
polynomials in p and let p, be a common zero of g and h.
Then in any neighborhood of p, there exist points p for
which, say, g(p)=0 and h(p)=#0.

The following theorem is known in a more general form from
the theory of functions in several complex variables (10],
but is included for the sake of completeness and in order to
point out a simple proof based on the above results.

Theorem 3.2.13: Consider the function F=h/g where g and h

are relatively prime polynomials in p. If F is known to be
bounded for all those p in a domain D where g(p)#0, then
g(p)=0 for all peD.

Proof: Without 1loss of generality, we may assume |F(p)!<l
for peD. Assume that there exists a point p,eD such that
g(pg)=0. In view of Corollary 3.2.12 it is sufficient to

assume h(go)so. Due to continuity of the polynomial g we may
state that for any ¢€>0 there exists an n1>0 such that
|q(21)|<e for all B; satisfying ||21-20||<n1. Similarly, due
to Theorem 3.2.11, for any ¢>0 there exists an n, such that
|h(21)|<|h(20)|-c if ||21-20||<n2. Clearly, we may choose
c<|h(go)|/2, in which case the expression for h(gl) beccmes
|h(gl)|>c. Choose then n>0 such that n¢ "y and n<n,. Due =3
Theorem 3.2.8, we can choose p; such that [ip,-p,ii<n and

q(gl):o, i.e., by assumption, that |h(gl)/q(gl)l51. This :s




in contradiction with |q(gl)|<c and Ih(gl)|>c.
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3.3. Properties of Widest Sense Hurwitz Polynomials and Self-
pactaconjugate Hurwitz Polynomials

The proof of the following Theorem is rather trivial:

Theorem 3.3.1: Let g be a widest-sense Hurwitz polynomial in
p- The following holds:

(i) Freeze one of the Py SaY Py.. at Pirg with Re pi,0>0.
The resulting polynomial in the remaining k-1 variables P is
also widest-sense Hurwitz.

(ii) Factors and products of widest-sense Hurwitz polynomials
are also widest-sense Hyrwitz.

Lemma 3.3.2: Let g be a widest-sense Hurwitz polynomial. Let
9 be the polynomial in k-1 variables obtained by freezing
any one of the variables Pi- say P,,, at p;,=jw;,4. Then,

(1) there exists an almost complete set, 2', of real numbers.
such that 9; is widest-sense Hurwitz {f ui,otQ' and that 93
is identically zero if ”1'0‘9"

(ii) There exists an almost complete real set 2"<Q’ such that
for ui,otQ', 9 is widest-sense Hurwitz and has, in its k-1
variabies, the same partial degrees as g.

Proof: We may assume i’'=l. Write g as a polynomial in p’
whose coefficients are polynomials in P;-

(i) There are at most finitely many values of Py thus a
fortiori finitely many such values with Re Py=0, for which
all these <coefficients can become zero. Choosing jw

10
different from any of these values, moving Py slightly from

Jw.. into  PRe pl>0, and apply:ng the cont:inuity proper:zy cf

&
the zeros of a pclynomial, we see that a zero of 3,(R") :n




Re p’>0 would imply a zero of g in Re p>0. The proof of (ii)
follows from (i) and Lemma 3.2.6.

The following result follows by applying Lemma 3.3.2 m times:

Theorem 3.3.3: Let g be a widest-sense Hurwitz polynomial in

P, and let Pa denote an m-tuple obtained by selecting any m<k
of the variables p, to p,. Let us freeze p, at p ,=jw , and
let 9, be the resulting polynomial in the k-m remaining P;-
Then

(1) 9 is either widest-sense Hurwitz or identically zero;

(ii) more ptccisoly; for any ordering selected, there exists
a sequentially almost complete set, Q of real m-tuples
such that g; is widest-sense Hurwitz if €2’ and that it
is identically zero if w_,£9'.;

(iii) there exists a sequentially almost complete set,
9'-c9'n » of real am-tuples such that, for Q_Otg"m - is
widest-sense Hurwitz and has, in its k-m variables, the same
partial degrees as g.

Theorem 3.3.4: If g is a proper self-paraconjugate Hurwitz
polynomial then there exists a sequentially almost complete
set, Q, of order (k-1), composed of real k-tuples w such that
g (jw) = 0 for any w ¢ Q.

Proof: We may assume that g depends on Py- Consider the one-—
variable polynomial 91(91) - q(pl,jgé), obtained by freezing
R’ at p’' = juw;, where w, is a real (k-l)-tuple. Due to
Theorem 3.3.3, there exists a sequentially almost complete
set, 2', of order (k-1) such that, for any wj ¢ 2’, g, is of
degree > 1 and is widest-sense Hurwit:z. Hence, there exists
at least one p,,, necessarily witn Re p,, < 0, such that

gl(plo) = 0. However, since g, = Cg, plé - - P16 is also a



zero of 9q where Re Pig < 0, i.e., Re pio > 0. Hence,
Re Py = 0.

Theorem 3.3.5: Let g be a widest-sense Hurwitz polynomial
and let d be the greatest common divisor of g and g,. Then d
is self-paraconjugate Hurwitz.

Proof: 1In view of Lemma 1 in (3], we have d, = Cd where C is
a constant. The rest follows from Theorem 3.3.1.

Oheorem 3.3.6: 1If g(p) is a widest-sense Hurwitz polynomial
in p, then g(p) and g, (p) have a proper common factor if and
only if g(jw) = 0 where the real k-tuple w can assume any
value belonging to a certain sequentially infinite set of
order (k-1).

Proof: Necessity follows Theorem 3.3.4 and 3.3.5,
sufficiency from Theorem 3.2.5.

Theorem 3.3.7: A widest—sense Hurwitz polynomial, g, can be
written as a product of a scattering Hurwitz polynomial and a
self-paraconjugate Hurwitz polynomial.

Proof: Write g = ad where d is the greatest common divisor
of g and g,. Then, a is relatively prime with a,. The rest
follows from Theorem 3.3.1 (item (ii)) and 3.3.5.

The following corollary follows immediately:
Corallary 3.3.7.1: An irreducible widest-sense Hurwitz

polynomial is either scattering Hurwitz or self-paraconjugate
Hurwitz.

Theorem 3.3.8: A polynomial g is self-paraconjugate Hurwitz

if and only 1f g #» 0 for Rep > 0 and for Rep < 0.




Proof: Necessity: Since g, = Cg, a zero for Rep < 0 would
imply a zero for Rep > 0 and is hence excluded.

Sufficiency: If g(p) # 0 for Rep > 0 then due to Theorem
3.3.3 g is the product of a self-paraconjugate Hurwitz factor
and a scattering Hurwitz factor. However, factors of the
latter type are excluded because they are known to have zeros
in rep < 0 (Theorem 3 in (3]).

Theorem 3.3.9: A polynomial g is self-paraconjugate Hurwitz
it and only it all its irreducible factors are
* self-paraconjugate Hurwitz.

*  Proof: Sufficiency is quite obvious. To show necessity,
observe that, due to Corollary 3.3.7.1 irreducible [actors of
] ace either self-paraconjugate Hurwitz or scattering
Hurwitz. Presence of a scattering Hurwitz factor, in view of
Theorem 3 in (3], would imply that g has a zero in Rep < 0,
which is ruled out by Theorem 3.3.8.

The following corollary follows immediately:

Corollary 3.3.9.1: Factors and products of
self-paraconjugate Hurwitz polynomials are self-paraconjugate
Hurwitz.

Corollary 3.3.9.2: Let g be a scattering Hurwitz polynomial
and h De a self-paraconjugate polynomial. Then, g and h are
telatively prime.

Proof: Otherwise, g would contain a proper self-paraconju-
gate Hurwitz factor and thus would not be relatively prime
with g,. Alternatively, apply Theorem 3.3.8 as well as
Theorem 3 in [3].

Lemma 3.3.10: Let g be a polynomial, and let us select one
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of the Py, 83y py. and choose mR2n - doglg. Then the
polynomial g’(n,p’) = n®.q(n" .g ) is widest-sense Hurwitz if
and only if g is widest-sense Hurwitz.

Proof: Obviously follows from the fact that 9'(n°,g'°)-0 for
Reny, > 0, Repy > 0 if and only if p; = nal + B’ = R’ is 2
zero of g in Rep > 0.

Theorem 3.3.11: Let ¢ be a widest-sense Hurwitz polynomial
in p and let i be any of the integers 1 to k such that
n,=deg,g 2 1. Then a“g/apr , for v = 1,2,...,n; is also
widest-sense Hurwitz.

Proof: It is enough to prove the theorea for v = 1. Assunme
i = 1, Since th, polynon%al 9,(py) = g(p1,26) obtained by
freezing p’ at p, in Rep, > 0 is widest-sense Hurwitz, by
invoking a classical result it follows that dgl/dp1 is also
widest-sense Hurwitz. The result then follows by noting that
3g/dp; = dg,/dp; , when p = 2;.

Note, however, that ag/ip£ is not even sgcattering Hurwitz
when g is strict sense Hurwitz. As an example, the
polynomial g = 9192’91’1 is strict sense Hurwitz, but 39/3p,
= p; is only a widest-sense Hucrtwitz polynomial.

Let us write the polynomial g(p) with dog1 g = n;, as
n, .
g=IA,6 (p Py (3.4)
ve(

vhere the A (p') acre polynomials in p’.

Lemma 1.3.12: Let g be a widest-sense Hurwitz polynomia.
invelving one of the variables, say P If g 1s written as
in 11.4), then for any two integers a,8 with 7 ¢ < 8 <« n,

-

a
and Aalo. there exists a set of positive 1ntegers N, Vea,a -




1,...,8, such that the polynomial in (3.5) is widest-sense
Burwitz.

8
, v—a
I Nv Av (p’) Py
Veg (3.95)
Proof: Due to Theorem 3.3.11, 9, = a“g/ap; is widest-sense
Hurwitz, while degi_aa - (nl-a). Consequently, due to Lemma
’ -
3.3.10, 9, = P; qa(pl 1) is also widest sense Hurwitz,
with deglg; - n-a . Invoking Theorem 3.3.11 again, it
nl-ﬂ nl-s
follows that 9s = 3 9./9p; is widest-sense Hurwitz
wvith deg, 9 " (nj=a) = (n;-B) = (B-a). Therefore, from

Lemma 3.3.10 we have that g; = pia-“)gé(pzl) is widest-sense

Hurwitz. The proof is then completed by noting that gé has
the form (3.5).

Theorem 3.3.13: Let g be a widest-sense Hurwitz polynomial,
expressed as in (3.4), and y be any integer 0 ¢ u ¢ n;. -
Then the following hold true: (1) 1If Ayﬁ 0, then A” is
widest- sense Hurwitz; in particular, A, (p’') # 0 for Rep’>0.
(11) I1£ 0 S w ,w+l,...p+vg ny and vy > 2 lhon it is impossible
to have A ., = A o...= A 180, A 40,/

A”*y A 0. (iii) Por any v satisfying 1 < » ¢ nl-l, if A” s 0,
A,y & 0 and Ag A 0 then A1/ is a positive constant.
(iv) If for any p satisfying 0 < » < ng. A”ﬂ 0, Au+1 a0
then l\”/A‘“_1 is a positive function.

Proof: (i) rollows immediately by choosing a=f=y in Lemma
1.3.12.

(ii) We prove this for vy = 3, the proof being similar for

y > 3. Lemma 3.3.12, with a = gy ,8 e u4 + 3, implies that 93
- (NH*BA”‘3pi ¢N”A”) is widest sense Hurwitz, where N”+3 and
N” are positive integers. However, this latter conclusion is
impossible due to the fact that for any fixed p’ in Rep’ > 0
(where, due to (i), A” » 0 and A”§3 » 0) the cubic equation
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g3 = 0 in P has at least one solution in Rep, > 0.

(iii) Lemma 3.3.12 with a=p-1,8 = x+1 implies that g, =

(N”+1 A pl2 + N”_IA”_I) is widest sense Hurwitz, where
N”+1 and N”_1 are positive integers. We may claim that
A,_17A 0 is real and positive for each f’ in Rep’> 0,
because otherwise there would exist a p’ = p’, in Rep’y > 0
for which the equation g, = 0 would have a solution in Rep, >
0. Since Ay /A is thus holomorphic as well as real
everywhere in Rep’ > 0, invoking a standard result in the
theory of functions of complex variables (e.g. the theorem on
the minimum of the 1maginary part), we have that A” 17A is

a constant.

u+l

(iv) Lemma 3.3.12 with a=4 , B=y+l yields that g9, = N”+1
Ay+1p1 + N”A” is widest-sense Hurwitz. Clearly, if A”/A”+l
has negative real part for some p’ = p’, in Rep’, > 0 then
Since Replo > 0, the latter conclusion is impossible due to
the widest-sense Hurwitz property of g9,

Theorem 3.3.14: Let g be a widest-sense Hurwitz polynomial
in p and 9 be the (k-l)-variable polynomial obtained by
freezing any one of the variables, say Py at P; = P1g in
Rep; 2 0. Then degiq = degig1 for the remaining variables
Py i = 2 to k except possibly for finitely many values of
P1o On Rep; = 0.

Proof: Write g as a polynomial in p’ whose coefficients are
polynomials in P;- Let A = A(pl) be any one of these
coefficients that is not identically zero for all p,- BY
repeated application of Theorem 3.3.13, item (i), it follows
that A(p,) is widest-sense Hurwitz. Hence, A(pyqo) # 0 for

Re Pig 2 0 and there are at most finitely many Pig = jmlo for
which A(jwig) = 0 (cf. also Lemma 3.3.2).

L LT v o

ERSTETT T w.u-.m_g

Tl 0 ECS R AR

", L
AR




3.4. Properties of scattering Hurwitz polynomials.

Theorem 3.4.1: If g is a scattering Hurwitz polynomial then

g cannot have a zero for a p, with Rep;, = 0 for one of the i
and Rep;, > 0 for the remaining i.

Proof: We may assume Rep,, = 0 for i = 1 i.e., pyq = Juw .
In view of Lemma 3.3.2, a zero of the type just mentioned
would require g(jw,,, p’) = 0 for all p’. Thus, in view of
Theorem 3.2.10, (pl-jwlo) would be a factor of g. Since
(pl-jmlo) is self-paraconjugate, this is excluded due to
(3.3).

It is important to note, however, that a scattering Hurwitz
polynomial can indeed have zeros e.g. for Py = jw;,py = jwz
and Rep, > 0, i = 3 to k. Consider the polynomial g = PPy +
PoP3 + P3Py + PiP,P3y which is scattering Hurwitz (1], but
g=0, when P = Py = 0.

Theorem 3.4.2: Let g be a scattering Hurwitz polynomial and
let i’' be any specific one of the i = 1 to k. Then the
(k=l)-variable polynomial 9, obtained by freezing Pj, at p;,
- 3“100 is also scattering Hurwitz and has the same partial
degrees in the remaining variables as g, with the possible
exception of at most finitely many values of Wirg:

Proof: We may assume i’ = 1. Referring to Theorem 3.4.1,
g,(p’)= g(jw;4q,p’) » O in Rep’ > 0. Furthermore, g(p) and
g,(p) do not have any nonconstant common factor. Therefore,
due to Theorem 3.2.7 with m=1, the polynomials gl(g') and
gia4(R") = g*(jwyg, = R'*) = g,(jw;4,p’) can have a common
nonconstant factor for at most finitely many values of Wig-
Furthermore, in view of Lemma 3.2.6, a lowering of a partial
degree can also occur at most for finitely many values of

Nlo.
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In view of the above theorem and Definition 3.2.la it is also
possible to state the more general result:

Theorem 3.4.3: Let g be a scattering Hurwitz polynomial.

For any m such that 1 < m < k consider the (k-m)-variable
polynomial g’ obtained by freezing m of the P; at p; = j”io
for, say, 1 { i < m. Then there exists a sequentially almost
complete set, Q. of order m of m-tuples such that for
(Wy0rW3gre--Wpg) €23, g° is still scattering Hurwitz, with
the same partial degrees in Pp+1 tO Py as g. Furthermore,

any ordering may be chosen for the set 2

Proof: Proof of the above theorem follows by sequentially
freezing, in any order, the variables p; to p, on the
imaginary axis and observing Theorem 3.4.2.

Theorem 3.4.4: A polynomial g in k variables is scattering
Hurwitz if and only if (i) g is widest-sense Hurwitz, and
(ii) the set of real k-tuples w such that g(jw) = 0 does not
form a sequentially infinite set of order (k-1).

Proof: Follows immediately from Definition 3.2.4, and
Theorem 3.3.6.

Lemma 3.4.5: Let g be a scattering Hurwitz polyﬁomial.
Freeze one of the Pj+ S3Y P;.. at Piro with Rep,,q > 0. The
resulting polynomial, 9, in the remaining P; is still a
scattering Hurwitz polynomial, and the partial degrees of 9,
in these remaining p; are the same as for gq.

Proof: Without 1loss of generality we may assume that i’'=l
i.e., 9; = gl(g'). Obviously 9, is widest sense Hurwitz
(Theorem 3.3.1). We show in the following that 9, and Iw
are relatively prime. If 9, and 91w have a nontrivial common
factor, then due to Theorem 3.3.6 there exists a

sequentially infinite set, Q' of real (k-l)-tuples w’ of




order (k-2) such that g(p;,, w’) = 0 for all o' € 2'. Thus,
applying Theorem 3.3.3, item (i), for m = k-1, we conclude
that g(p,,jw’) = 0 for all p, and all w'e Q'. We therefore
have, in particular, g(jwl,jg') = 0 for all w’eQ’ and any
arbitrary W, . Thus g would be zero for real k-tuples w
belonging to a sequentially infinite set of order (k-1),
which 1is impossible in view of Theorem 3.4.4. Furthermore,
the preservation of the partial degrees follows from Theorem
3.3.14.

Repeated use of Lemma 3.4.5 yields the following more
general result:

Theorém 3.4.6: If g is a scattering Hurwiéz polynomial in p
then for 1 { m < k the m-variable polynomial, g’, obtained by
freezing (k-m) of the P; at P; = Pjp in Rep; > 0 is
scattering Hurwitz and the partial degrees of g’ are the same

as the corresponding partial degrees of g.

Theorem 3.4.7: If g is a scattering Hurwitz polynomial
expressed as in (1) with degig = n;, then A, # 0 for each

b
vV = 0,1,2,...!‘11.

Proof: Assume i = 1. For any p’ = p’, with Rep’, > 0, the
polynomial gl(pl) - 9(91'26)' due to Theorem 3.4.6, is a
scattering Hurwitz polynomial in the single variable P
(i.e., a Hurwitz polynomial in the classical sense (3]) of
degree equal to n, = deglg and thus has nonzero coefficients
for v = 0 to n,.
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3.5. Rational Positive Functions and Related Results

Theorem 3.5.1: Let F=h/g be a rational positive function in
irreducible form (g and h thus being relatively prime
polynomials) with h(p) # 0 (and, obviously, g(p) » 0). Then,

(i) the polynomial g+h is scattering Hurwitz,
(ii) both g and h are widest-sense Hurwitz.
Proof: (i) Consider the function
p = (F-1)/(F+1) ' (3.6)

which we can write in the form p=c/d, ¢ and d being defined
by c¢=h-g, d=h+g. Clearly, c¢ and d are relatively prime.
Then, for Re p>C and d(p) » 0, we have Re F(p)>0 and thus
le(p) <1 if g(p)#0, and e(p)=1 if g(p)=0. Hence, by Theorem
1l in (3] (where in view of the proof of Theorem 1 in [1l], on
which the proof of Theorem i1 in (3] is based, (3.4) should be
interpreted to mean that the first inequality is known to
hold for all those p in Rep>0 for which g(p)#0), d is
scattering Hurwitz. (Note that d(p)#0 for Rep>0 follows from
Theorem 3.2.13.)

(i1i) Since d(p)#0 in Re p>0, we cannot have g(p)=h(p)=0 in

Re p>0. If only one of the polynomials g and h has a zero
for a p, with Re p, > 0 we have p=+1. This, however, is
excluded since due to the maximum-modulus theorem (10] we
have in fact |pe(p)(<l in Re p>0, except if o is a unimodular
constant, i.e., if FejC, C being a real constant (in which
case g=1, h=jC).

Theorem 3.5.2: If F is a rational)l posit:ve function, then




(i) Re F(p)>0 if Re p>0 and F is nontrivial;

(ii) Re F(p)>0 for any p in Re p)0 where F(p) is holomorphic;
-(iii) assuming F(p)X0, 1/F 1is also a rational positive
function.

Proof: (i) Define o by (3.6) and consider a closed
polydomain U in the neighborhood of an arbitrarily selected
point p, with Re p,>0. In view of Theorem 3.5.1, F and » are
holomorphic in U. Thus |p(p)|<l for p ¢ U, while application
of the maximum-modulus theorem 1in its simplest form (10]
yields |p(p0)|<1, i.e., Re F(2°)>0. The proof of (ii)
follows by simple continuity arguments, and that of (iii)
follows in an obvious fashion from (i).

Theorem 3.5.3: If g and h are relatively prime polynomials,
then Feh/g is a positive function if and only if (i) the
polynomial d=g+h is scattering Hurwitz, (ii) Re F(jw)>0 for

all p=jw where F(p) is holomorphic.

Proof: Necessity of (i) follows from Theorem 3.5.1,
necessity of (ii) from Theorem 3.5.2 item (ii). For proving
sufficiency, observe that for p defined again by (3.6) and
d(jw)=#0, we have Re F(jw)20 and thus [p(jw)|<l if g(jw)= O,
and p(jw)=l if g(jw)=0, altogether thus |p(jw)|<l wherever
p(jw) 1is holomorphic. Hence applying Theorem 1 in [2]
(generalized maximum-modulus theorem), we conclude that in Re
p>0 we have |po(p)i<l and thus also Re F(p)>0. The only
exception to this is if p is a unimodular constant, in which
case F is an imaginary constant, thus a trivial positive
function.

temma 3.5.4: Let F be a positive function (reactance

function). For any m such that 1 < m < k, consider the
{k-mi-variaple raticnal function F' obtained by freezing, in
F, m of *=he variables P, at p = jin' say fcr i = 1 to m.
Then there exists a sequentially almost complete set, Qm' of
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order m of real m-tuples such that for any (“10'"20"““-0) 3
L F’' is still a positive function (reactance function). 1If
in addition, F is given in irreducible form, F=h/g, then Q_
can be <chosen such that F’= h’/g’ is also in ircreducible
form, h’ and g’ being obtained by applying the corresponding

freezing operation to h and g, respectively, and that the

partial degrees of h’ and g’ in the remaining variables are
the same as for h and g respectively, with 2  remaining
otherwise as stated.

Proof: We need to prove the lemma for m = 1 only. Due to
Theorem 3.5.1, g is widest-sense Hurwitz. Also, let g’ (p’)
-g(jwlo,g'). Due to Lemma 3.3.2, there exists an almost

complete 'real set, 27, such that g’(p’) # 0 for Rep’ > C and
Wi ¢ 9 and that the partial degrees of h’ and g’ in P, to
Py are the same as those of h and g, respectively. In
particular, for Wig € 9, F is regular for Rep’ > 0, and by
invoking Theorem 3.5.2, it follows that the function F'(p' . =
F(jwlo, p’')., for w9 € 9], satisfies the property tha:

ReF’(p’) 2 0 for Rep’>0, i.e., it is a positive function.

Furthermore, if F is a reactance function then
F + F, =0 implies that F' + F, = 0. Consequently, F' 1s a
reactance function.

Also, due to Theorem 3.2.7, there exists an almcs®
complete real set Qi such that the polynomials g’(p’) and
h’(p’) = h(jw,,p’') are relative prime for w,, ¢ @7.
Therefore, h’/q’ is in irreducible form if w is required to
be in the almost complete set 91 - (Qinni).

Lemma 3.5.5a: The numerator and denominator polynomials of a
positive function in irreducible form cannot conta:in
self-paraconjugate factors of multiplicity lacrger than =zne.

Proof: Let F = h/g be a positive function in irreduciktle
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form, and ¢ contain a proper self-paraconjugate factor, s, of

multiplicity v. Let a involve, say. p,. Then it follows by

invoking Lemma 3.5.4 with = = k-1 that there exi1sts a
sequentially almost complete rceal set, Q', of order k-1,
such that for any rea. k-tuple w'g, € 9, the rational
function r, = h, /g, with h,(p,) = hip,, jw' ) and g,'p,/ =

q(pl,jg'ol, is a one-variable positive function 1n
icreducible form and that the partial degree of g, i1n p, 1
the

nonconstant

same as that of g. Obviously, 0, 'py - 2 p,.Jw' . i85 8

91'
Since a is self-paraconjugate, s,

tactor of 9,'p;" of sultiplicity at leas*”

equal to v. 18 alsc seit-

paraconjugate. Purthermore,” *aking into account Thecrew

3.3.3, 8, is widest-sense Murwitz end, therefcore, .:°s rercs 'i
(A

are testri~te?d - be IN p. e+ ‘w, Tongequent.y 3. has zercs *y

of sultiplicity at least v on the p. = ‘w. 8xi$
»

- -
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invoking a well known one-variable result we assert that
(dql/dpl)/q. is a positive function. However, since this
latter conclusion is true for any p; in Rep’ > 0, we have
lc[(bq/ipl)/ql 2 0 for Rep > 0.

finally, for the sake of completeness, we offer a more
complete, but obvious version of Theorem 3.5.2, item (i).

Theores 131.5.7: A rational function PF is a nontrivial

positive function positive i1f and only if ReF(p) > 0 for Rep
> 0.

Proot: Sufficiency follows by a simple continuity argument.
Necessity has been shown in Theorem 3.5.2, item (1), but it
also follows by simple application of the theores on the
ainisus of the real pert of & holomorphic function.
Alternatively. we may freeze p’ at a p, with Reps>0, in which

case F reduces to & functicrn r1 in py alone. Applying
Thecrems ! 3.1, 31.31.1¢, and 13.95.1, 'l 1s found to be a
nontrivis. pcsitive function, 1.e., the proof 1s reduced to

the known <ne-variable result Ref <pl)>0 in l.pl>0.

1




3.6. Reactance Hurwitz Polynomials

The following lemma follows directly from Definition 3.2.6
and Theorem 8 in (3]:

Lemma 3.6.1: A reactance Hurwitz polynomial is
self-paraconjugate Hurwitz.

Definition 3.2.6 is justified by the following theorem:

Theorem 3.6.2: l. If g is a reactance Hurwitz polynomial,
there exists a polynomial, h, relatively prime with g, such
that h/qg is a reactance function in irreducible form.

2. Vice versa, if h/g is a reactance function in irreducible
form, the following holds: (i) g and h are reactance Hurwitz
polynomials. (ii) ror any constant C, the polynomial d
defined by d-qo¢h0, 94=C9. ho-Ch, is scattering Hurwitz. 1In
particular, it is always possible to choose C in such a way
that the paraeven and parsodd parts of d are equal to 9 and
ho, respectively, or that these parts are equal to ho and 99
respectively.

Proof: For proving the first statement, observe that in view
of Definition 3.2.6 there exist polynomials gy and h, such
that g,,=+9,, ho.-:ho, and g, = Cg and that g, +h, is
scattering Hurwitz, the two upper and the two lower signs
corresponding to one another and C being a nonzero constant.
8y Theorem 7 of (3], ho/qo is then a reactance function in
frreducible form and the same 1is thus true for h/g where
h-ho/C.

For proving the second statement, obsecrve first that in view
of Theorem 3.5.1, g and h are widest-sense Hurwitz while
gooho 1s scattering Hurwitz where gO-Cg and ho-Ch, C being an
arbitrary nonzero constant, and that in view of Definition
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3.2.9 we have h, /g ,=-h/g, thus g,=vg, h,=-vh,y being a
constant (necessarily unimodular). If in particular we
choose C such that C2 =+ y we have 9g+=29¢- hot':hO'

Theorenm 3.6.3: If g is a self-paraconjugate Hurwitz
polynomial then for any { = 1 to k with n, = dcgiq 21, r -
h/g is a reactance function where h = 39/391‘

Proof: From Theorem 3.5.6 it follows that h/g is a positive
function. Assume i = 1, If g is written as in (3.4), then
9. * g: A (p'). ('Pl)v'

Since“-g is self-paraconjugate, g = Cqg, for some constant C
with |C| = 1. Therefore, A = (-I)VCAV. whence it can be
shown that 39/391--C(39/ipl),. It thus follows that I _e-r.

Consequently, F is a reactance function.

Corollary 3.6.3.1: 1f 9 is an icrceducible,
self-paraconjugate Hurwitz polynomial then for any i « 1 to k
with n, = deqiq 2 1, (39/391)/9 is a reactance function in
irreducible form.

Proof: Since g is irreducible and the partial degree of
aq/lpi is smaller than that of g in the variable P; the
polynomials 99/9p, and g are relatively prime. The proof is
then coamapleted by observing Theorem 3.6.3.

Theoctem 3.6.4: A polynomial g is reactance Hurwit2z {f and
only if all its irreducible factors are self-paraconjugate
Hucrwitz and it contains no multiple factors.

Proof: Necessity: 1If g is a reactance Hurwitz polynomial,
invoking Theorem 3.6.2 there exists a reactance func::nn,

thus a positive function, Fsh-'q, such that h and 3 are
relatively prime. In view of Lemma 3.6.1 and Theorem 3.3.9,




{creducible factors of g are necessarily self-paraconjugate.
It then immediately follows from Lemma 3.5.%a that g cannot
contain multiple factors.

Sufficiency: Let g, i = 1 to v, be the irreducible,
distinct, self-paraconjugate factors of g. Let 9 involve
the variable piclpl,pz,...,pk} and consider the polynosial h

v
defined by h/q = tl(ht/qi)'hi - 39,/%;.
ie

from Corallary 3.6.3.1 we conclude on the one hand that h/g
is a reactance function, and on the other that each ht is
telatively prime with the corresponding 9, Thus, since by
assumption the g, are pairvise wmutually prime, h |{s
telatively prime with gq. The proof is then completed by
observing Theorem 31.6.2, second pact, item (i)

Corollacry 3.6.4.1: Products of reactance Hurwitz

polynomials, that are pairvise relatively prime are reactance
Hurwitz polynomials. Conversely, any factor of a reactance
Hurwitz polynomial 18 also & reactance Hurwitz polynomial.

Proof: Follows immediately from Theorem 3.6.4
Corallory 3.6.4.2: A polynomial, g, {s reactance Hurwitz {¢

and only if it is self-paraconjugate Hurwitz and contains nc
multiple factor.

Proof: Follows from Theorems 3.3.9 and 3.6.4.

Coctollary 3.6.4.3: Any scattering HMHurwitz polynom:al 1is
telatively prime with any reactance Hurwitz polynomial.

Proof: Follows from Corollary 3.3.9.2 and Lemma 3.5...

Theorem 3.6.5: Let g be a reactance Hurwitz polynom:ial. Foar




any integer m such that 1 ¢ » < k, freese m of the variables
Py at p, = ’“10‘ say for { « 1 to m. Consider the polynoaial
g’ in Pae1 t° Py defined by 9 (Pgepr---"Py'" 9(1»10,....ju.0.
’-41"“'pk" Then there exists a sequentially almost
complete set, e,
‘“10"20""“.0)‘9-' g’ is stil]l reactance Hurwitz and that
its partial degrees in Pae] tO P, are the same as for g.

of order m of real m-tuples such that for

Proof: Due to Theorem 3.6.2 there exists & polynomial h such
that f e« h/9 is a reactance function in irreducible form.
Applying Lemma 3.5.4 to the rational function F « h/g, we
conclude that 2, ®ay be chosen in such a way thst the
cesulting F’' = h’/g’ is & reactance function in irreducible
form, with g’ having the same partial degrees in Pa.]1 t° Py
88 g§g. The rest of the proof follows by applying item (1) of
the second part of Theorem ).6.2 to P’.
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rties of Immittance Hurwitz Polynomials

The following theorems justify the characterization of
immittance Hurwitz polynomials as given in Definition 3.2.7.
Theorem 3.7.1: If £ = h/gq is a positive function in
irreducible form, then both h and g are immittance Hurwitz
polynomials.

proof: g is widest sense Hurwitz in view of Theorem 3.5.1.
Invoking Theorema 3.3.7 it follows that g is product of a
scattering MNurwitz polynomial, 9, and a self-paraconjugate
Rurwitzs polynomial, 93 By virtue of Corollary 3.3.9.1,
Lemma 3.5.%a, and Corollary 3.6.4.2, g, is reactance Hurwitz.
The same acrguament holds for h.

Corollacry 3.7.1.1: ~rFactors of immittance Hurwitz polynomials
ate immittance Hurwitz. Conversely, products of immittance
Murtwitz polynomials that do not have any common self-
paraconjugate factors are also immittance NHurwitz.

Proof: Obviously follows from Definition 3.2.7 and Corollary
3.6.4.1.

Theotea 3.7.2: Every immittance Hurwitz polynomial is the

nuaerator or denomainator of a positive function in
irreducible form.

Proof: Since the reciprocal of a positive function is also a
positive function, it is enough to prove the theorem for the

denominator polynomial, g. Let g = ab, wvhere a and b are,
tespectively, the scattering Murwitz and the reactance
Murwitz factors of g. Then, due to Theorem 31.6.2, there

eX18%s a pa.ynomia. < that 1s relatively prime with b and

such rthar - b 1s a reactance funcrion. Let us define F = [

(8, 4/ + 'c'b:r. F can also be written i1n the fotm F = h g,

--,'.‘{¢
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wvhere h = ab + a,b + ac. Since a,/a is an all-pass function,
1 + (a,/a) is a positive function (cf. Lemma 2 of (3]), and
the same is true of Fr. According to Corollary 3.6.4.3, a and
b are also relatively prime. Furthermore, in view of the
definition of a scattering Hurwitz polynomial, a is
relatively prime with a,. Hence, since h = a(b+c)+a,b =
(a+a_ )b+ac, h can not be divisible by any factor of a or of
b. The proof is thus completed by observing that any common
irreducible factor of h and g would have to be a factor of
either a or b.




3.8. Tests for Positive Punctions and Related Results

Results, which are useful in identifying pusitive functions
based on their behavior on the distinguished boundary of the
domain of holomorphy have already been proved essential [1l1]
in problems related to multivariable network synthesis and
are elaborated in this section.

Theotrem 3.8.1: Assume that the rational function F = h/g
satisfies the following properties: (i) g is a scattering
Burwitz polynomial (ii) dcqih < dcgig. i =1 tok;

(i11) Rer(jw) > 0, where @ is any real k-tuple such that F(p)
is holomorphic at p=jw. Then F is a positive function.

Note that we have not assumed the polynomials h and g to be
relatively prime.

Proof: The validity of the theorem for k = 1 is classically
known. To prove the result in the genecal case, via
induction on the nuaber of variables, we assume that the
theorea be true for k-1 var{cblcs, where k > 2.

Let us freeze one of the variables, say P, at 3”10 and

define the cational function in k-1 variables, F, - bl/ql.

where hl(g') - h(julo,g') and 9,(R’) = g(jw q/p'). Due to

Theorem 3.4.2, therte exists an almost complete set, Q. of

teal numbers such that for all Wig € 2, ql(g') is scattering

:utvit: and doqig - dogiql, thus doqih1 < dcgiql, for all i =
to k.

Since g liw’) = gljuyq,w'), the condition gy (iw’) = 0 implies
q(julo,jg') s 0. Thus, Ref, (juw’) = Ror(julo.jg’) > 0 for
ql(jg') » 0.

All the prerequisites for the validity of the present “heorenm
arte, therefore, satisfied by the (k-l:-variable raticnal

function F,- Hence, by induction hypothes:is, ReF,(p"! > 0




for Rep’ > 0. Therefore, if w,, ¢ @, then (3.7) applies.

ReF(jw;q, P') 2 0 for all Rep’ > 0. (3.7)

Let us now freeze the variables p’ at an arbitrary point pg
with Rep) > 0 and define the rational function Fy = hy/g, in
the variable P only, where ho(pl) - h(pl,g'o) and go(pl) -
g(p;/Rg)- Due to Theorem 3.4.6 with m=k-1 the polynomial g,
is scattering Hurwitz, thus Hurwitz in the classical sense
(cf. Theorem 2 of (3])) and deglgo - deglg > deglh > deglho.
Furthermore, it follows from (3.7) that ReF,(jw;) > 0 for w,
€ 91. Hence it follows from a classical result that Rero(pl)
> 0 for all P with Rep, > 0. Therefore, we conclude that
Rer(p) > 0 for Rep > 0. '

The following comments on the above result are in order. In
the one-variable case the proof of the above result follows
by 1invoking the maximum modulus theorem on the function
exp(-rF). In the multidimensional situation, however, a
maximum modulus theorem which allows for special types of
singularities on the boundary of the domain of holomorphy is
not found in the literature. Reference (2] gives a version
of maximum-modulus theorem where non- essential singularities
of the second kind are allowed to occur on the boundary of
the domain of holomorphy, but the proof is restricted to
rational functions only. The non- rationality of the
function exp (-F) makes it impossible to use results of [2],
in the present context, thereby calling for an independent
ptoof of Theorem 3.8.1.

Note that Theorem 3.8.1 can be generalized to include the
possibility that the domain of holomorphy of F be a cartesian
product of domains other than half-planes (e.g., discs) 1in
the variables P, i = 1 to k.

The following pacrtial results are of some ;nteresc.
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Theorem 3.8.2a: If F = d/cg is a positive function in p
written in irreducible form where g is a scattering Hurwitz
polynomial, ¢ is a reactance Hurwitz polynomial that is the

product of reactance Hurwitz polynomials in one-variable
only, and d is a polynomial such that degid < degi(cg). i=1
n

to k, then F can be decomposed as F = [ F,* (dl/g), where

each r, is a one-variable reactance f&ﬁétion and (dl/q) is a

positive function in p, with degid1 < degiq for each i =~ 1 to

k.

Proof: Write c = CyC€q--Cps vhere ¢ = (p;-jmvo), v =1 to
n, each p; being one of the Py to Py and two w0 being
necessarily distinct if the corresponding P, rfepresents the
same p,. We claim that the rational functions K, defined in

‘ (3.8a) are constants. We show this for v=1, assuming p; =

‘ Py in which case K, could be a function of p’.

| lia ) n

| K (p') = pl=ju g l{py-jw,qy)d/cg] ; & = d-cg I K sc

\ vel (3.8a,b)

For each p’ = py in Reps > 0, K,(pg) is the residue of the
positive function F'(py) = F(p;.Ry) at the pole P; = 3“10 and
is hence positive and thus, in particular, real and finite.
Therefore, K ;(p’) is real and holomorphic in Rep’ > 0.
Consequently, invoking a standard cesult from the theory of
functions of complex variables, it follows that K, :is
independent of p’; it is thus a positive constant. Consider
next the polynomial l(p) as defined in (3.8b). Substituting
for the K, from (3.8a) in (3.8b) it follows that l 1s zero
for Py = Je,q. independently of the values of the other P,-
Bence, all <, divide {, 1.e., since the c, are distinct, d, =

1
C/c is a polynomial in p. Equation (3.9a) then follows bty
stra.ghtfcrward ailgebriic manipulati:on, where ' s as
def.nec :n 1.3%3b . n
F e ic',yc, » 1d, 3 ; ¢c" » (X cC ¢ j.%a. %
1 v v
vel
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Clearly, c¢’'/c is a reactance function. Next, we note that
for p = Jjw, w real, Re(d;/g) = ReF > 0 at all those points

where c(jw)g(jw) =# 0 and thus, by continuity, where g/jw, =
0. Due to (3.9) and F = d/gc the inequalities degld <
degi(gc) imply that degid1 < deg;g for each i = 1 to k.
Hence, invoking Theorem 3.8.1 it (follows that d,/g 1s a
positive function. The proof is thus complete.

Note that the above result can be easily extended :c
the case with siaple poles at p, = = s follows.

Theorem 3.8.2b: If F = d/g is a rational positive functicn

such that the polyncomial g is scattering Hurwitz and deg < »
dcgig for some of the 1c¢I, then there exist nonnegaz.ive
constants Ki such that r can be written in the form

k

+ L
0 i=

FerF Kipi where ro - do/q is a positive funct.zn w.tn

1

dcqido < degig. i =« 1 to k.

Proof: Assume first dcqid > degiq for 1 =« 1. Llez A g° and
B(p’) be the respective leading coefficients of d and g, wnen
considered as polynomials in Fy v}th the cogffxc;en:s wiltten
as polynomials in p’. For any £o with R'Ec > $ the functicon

'1‘91’ - r(pl.gé) is a positive function :n the vac.ac'le

«: "y

only. Furthermore, since due to Theorem 3.3.13, A *

/ E)
D(go) 2 0 the degrees of 4 and g 1in P, femain una.tered 2_e
to the substitution p - Ry Hence, 'L Py’ -3 a pcs.tive
function having a pole at 1nfinity, necessari.y S.mp.e. w.2n
tesidue K,(p;:. Therefore, K,’R"' i3 real and pos.tive. Inus
in particular finite and therefore holomcrphic o all Rep’

Q. This 13p..es, 1n v.ew of a standard result .~ the -ex-o

cf fuinctizns zf ccmplex variarles that ¥ 3 3 "costanc T-a

same hc.3ds f2: tne rema.n:ng ., .. .2 . Aal"ci2tne: e .~ ot-ay-

the KL, Jef.ned <c2rresponding.y 2 XK., are ~ctnnezat.
.
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constants for i = 1 to k.

Consider next the rational function Fg = do/g defined

via

any

degi

by
the

A(p’

k
!'o-l'-t K

. Clearly, ReFo(jg) = ReF(jw) where w is
i=l

iPi
real k-tuple such that g(jw) # 0. Furthermore, degid0 <
g for i = 1 to k. This follows, e.g., for the case i = 1
writing the polynomials 4 and g appearing in F = d/g in
same way as above and taking into account that K, =
)/B(p’). Invoking Theorem 3.8.1,it then follows that F,

is a positive function.
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3.9. Conclusions

The artifice of sequentially almost complete and sequentially
infinite sets, which proved to be very useful in the present

context, have  been introduced. Properties of widest-sense

Hurwitz polynomials, self-paraconjugate Hurwitz polynomials,
strict sense Hurwitz polynomials and scattering Hurwitz
polynomials have been studied. Several properties of
multivariable positive rational functions have been
investigated in this context. Reactance Hurwitz polynomials
and immittance Hurwitz polynomials have been introduced.
They fall out as the appropriate polynomials occurring as the
numerators and denominators of (rational) reactance functions
and positive functions respectively. The hierarchical
relationship between the several c¢lasses of multivariable
Hurwitz polynomial thus delineated is diagramatically shown
in rigure 3.1, in which an arrow (single or double) points to F
subclasses of polynomials, whereas double arrows originate 1
from classes formed by products of elements of classes to ]
which they point. A nontrivial result, which proves to be
1 vercy useful in theoretical tests for the property of
positivity of holomorphic functions and is formulated in

terms of the behavior of its real part on the distinguished
boundacty of the domain of holomorphy has been derived.
finally, in view of its validity in the one-variable case, it
seens plausible to conjecture that given any positive
function with a self-paraconjugate Hurwitz factor in its
denominator it is always possible to extract a reactance from

+%., thus leaving a positive function with scattering Hurwitz

1ence.na%or only. A partial result in this direction has been
nr . ided .
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CHAPTER 4

REALIZATION OF STRUCTURALLY PASSIVE
MULTIDIMENSIONAL DIGITAL FILTERS

4.1.Introduction:

Various synthesis schemes such as the Darlington synthesis
scheme for synthesizing lossless transfer functions as a
cascade interconnection of most elementary lossless building
blocks such as inductors, capacitors, gyrators etc. in the
continuous time domain have now become classical in the
network theoretic 1literature. The corresponding problem in
the discrete time domain, namely that of synthesizing a
discrete lossless bounded (or positive) transfer function as
a structurally passive interconnection of elementary lossless
building blocks was first resolved via transformation from
prototype problems in the continuous time domain, and the
resulting class of filter structures are now known as the
wave digital filters [1]). Recently, however, successful
attempts to derive these and similar other discrete domain
results without making explicit use of tools of classical
network theory have been made. Notable among these are the
orthogonal filters (2], and the class of filters described in
(3], (4] and in related other publications.

In view of interest in the synthesis of multidimensional
(k-D) structurally passive digital filters, the problem of
synthesis of k-D lossless two-port transfer scattering matrix
via the bisection of a prescribed two-port into a cascade
connection of ¢two lossless two-port sections of smaller
"degree"” has been addressed in the continuous time domain in
{S]. An attempt to develop a self consistent theory for the
synthesis of k-D structurally passive digital filters
independent of the continuous time methods have already been
initiated in (6] by discussing the discrete domain stability
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properties of a class of multidimensional polynomials. The
present report addresses the problem of synthesizing a k-D
discrete lossless bounded matrix as the transfer function of
a structurally passive two-port digital filter directly in
the discrete domain. Our approach is to bisect the prescribed
discrete lossless two-port into a cascade interconnection of
two discrete lossless two-ports as shown in figure 4.1.
Necessary and sufficient conditions as to the feasibility of
the bisection is obtained. It falls out that in the
one-dimensional (1-D) case the aforementioned bisection is
always feasible. Our discussion in the 1-D context thus
yields yet another algorithm for the structurally passive
synthesis of 1-D lossless digital filter transfer functions,
previously not discussed in the literature.




4.2. Notation, Terminology and Problem Formuation:

We first explain the notation to be used in the rest of the
paper in the following. Notations such as a, b, ¢ will denote
polynomials: a=a(2), b=b(z), c=c(2) in k-variables z =
(3,29,...2,). Notations such as n‘i'o: doqia will denote the
parctial degree of a in the variable z,. The compact
notation:

n n n n
3 ® 8 2, ‘lzz ‘2...3k 3k will also be used.

-1 -1 -1 - n
rinally, lea'(z; ,z; ,...z; y, a8 a.z

where +* denotes complex conjugation. Corresponding notations
for various polynomials other than the polynomial a will also
be used.

A k-D discrete lossless two-port is characterized (6] by an

associated transfer function matrix H as in (4.1) or by a
transmission matrix T as in (4.2).

n
-a
Fa]ll-b/a, [H]lz-déz /8 (4.1la,b)
LY
[8121-c/a, [lez--dbz /8 (4.1l¢c,d)
(T]ll-da/c, [T]lz-b/c, (4.2a,b)
LY
[T121-d52 /c,[lez-a/c (4.2¢c,d)
where a,b,c are polynomials such that 8§ is scattering Schur
(61, degibSdeqia, degicsdegia for all iel to k, d is a
unimodular complex constant i.e., |d| = 1 and

a3 = bbb + c@&, (4.3)

Note that (4.1) can be regarded as a discrete k-D
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countecparct of Belevitch canonical form for the
tepresentation of lossless bounded two-port scattering
matrices, well known in classical network theory.

In more specific terms the probles dealt with in the present
teport can be described as follows. Given T as in (4.2), two
unimodular complex constants d’, d* with d « d'd", and the
polynomial factorization ¢ e c¢’c", along with two sets of
integers n’=(ni,nj,...n ) and n%e(n},n3,...n ) such that
doq‘c'sni. doqic'sn; and ".1'“1‘"2 for all i= to k, we seek a
factoriszsation T e« T'T", where T' and T" are also discrete
lossless two-port transmission matrices with associated
polynomials (a’,b’,¢c’) and (a",b",c") crespectively. In
addition, the cteqguirements d'Qil'Sni and dogia'gn; needs to
be satisfied. Thus, both T’ and T" are also required to have
cepresentations similar to those expressed in (4.2). In
particulac, the polynomial triples (a’,b’,c’) and (a",b",c")
are also rcequired to satisfy the condition that &', 4" are
scattering Schur, dogib’gdoqia'. dogib'gdcgia” for all ie=l to
k and (4.¢) holds true. The discrete lossless two-ports with
asgsociated transmission matrices T' and T" resulting from the
factorization of the transmission matrix T is shown in figure
4.1.

8’8’ @ b’'B’ec’’ (4.4a)
a"§" =« b"B" + c"C" (4.4b)

It then easily follows by considering representations of T’

and T" such as that expressed in (4.2) for T that the

condition T«T'T" is equivalent to the conditions expressed in
(4.5a) and (4.5b) in the following.

. = Ea"

a = a'a" +d’ b'b"z (4.%a)

b = d'a’'b” -« b’4" (4.5b)

The above considerations motivate the following definition.




Definition d4.2.1: The pair of polynomial two-tuples (a’,b’)
and (a",b") is said to be a solution to the algebraic
equation {if equations (4.4) and (4.5) along with the degree
testrictions dcgia'sni and dcqia'Sn; for i=1 to k are
satisfied.

We note that in the above definition the degree restrictions
on the polynomials a’ and a" are expressed as weak
inequalities rather than equalities as is required by the
solution to the original problea. Also, the restrictions that
the polynomials &’ and 4" be scattering Schur polynomials are
not imposed at all.

Definition 4.2.2: A polynomial triple (a",b",b’) is said to
satisfy the fundamental equation if (4.6) along with (4.7)
holds true.

d’.ab" - ba" = -b’c"c"z?’ (4.6)
dcgia"snz and degib'gni (4.7)

Note that equation (4.6) is obtained by eliminating the
polynomial a’ from (4.5a,b) and (4.4b). Obvicusly then any
solution of the algebraic equation also satisfies the
fundamental equation.

...... "~
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4.3. Solution to the Algebraic equation:

Clearly, any solution to the problem of factorization of T
into T'T" is also a solution to the algebraic equation. The
following theorem shows that the scattering Schur properties
of &’ and &" and the degree requirements on a’ and a" are
automatically satisfied by any solution to the fundamental
equation, and therefore, any solution to the algebraic
equation is also a solution to the problem of factorization
of T into T’'T".

Theorem 4.3.1: 1If the pair of polynomial two-tuples (a’,b’)
and (a”",b") constitute a solution to the algebraic equation
then the polynomials 4’ and &" are scattering Schur and
deqia'-ni, doqia'-n; for all i = 1 to k.

Proof: Consider the rational function defined as:

ve (& 5")/8=((878")/8)zR (4.8)
where 2"(plcp2:o--Pk)c
and pi'nai'("a'i*na'i) (4.9)

Since & is a scattering Schur polynomial, “i*n;'"ai' and
factors of a scattering Schur polynomial are also scattering
Schur, the denominator polynomial of v is also scattering
Schur.

Furthermore, straightforward algebraic manipulation of
equations (4.4b) and (4.5) yield the following.

v=(a"/c")(&"/8")(1-d'(B/&)(b"/a")] (4.10)

Since it follows from (4.3) that [B/3[<l and |b"‘/a"|<l for
lzil-l for 1=1 to k, an examination nf 14.10) ylelds thar
Rey2>0 for 1zi|-1, wherever ¢ is well defined. Thus, by




invoking a result proved in (6] it follows that v is a
discrete positive function. Consequently, the numerator
polynomial of v, in irreducible form, is a widest sense Schur
polynomial. This, however, implies that n .=n_,.+n .. for all
iel to k. The last equality along with the facts that

ﬁ-ni+n; together imply that ni=n and

nizn.,i, ":2"3"1 and n a’

a
L
ni-n‘.i .

The widest sense Schur property of 4’ has already been
established. Next, if for some z, on the distinguished
boundary of the polydisc Izilsl, i=1 to k we have a'(go)-o
then from (4.4a) it follows that b'(go)-o, which in turn due
to (4.5a) imply that a(go)-O. Consequently, if &', and thus
a, had a sequentially almost complete set (6] of zeros on
the distinguished boundary then a would also have a
sequentially almost complete set of zeros there, which is
impossible if @& scattering Schur. Therefore, & cannot have
sequentially almost complete set of zZeros on the
distinguished boundary. The scattering Schur property of & is
thus established in view of results in (5]. Similar
arguments hold for &".

A lossless two-port is said to be an allpass if the
polynomial b associated with it is identically equal to zero.

We will need the following result as a preparation for the
test of the discussions to follaw.

Theorem 4.3.2: Any discrete lossless two-port transmission
matrix T can be factored as T-Ttrort, where Te, T, T, are
also discrete lossless two-port transmission matrices such
that ‘r£ and Tr are allpass and if To has representation in
terms of polynomials a, b, ¢ as in (4.2) jhen the polynomial

a is relatively prime with b as well as bg-a.

In physical terms the above factoricaticn amounts -




extraction of discrete lossless two-port sections from the
front and rear end of the prescribed transmission matrix.
Thus, without 1loss of generality it will be assumed in all
forthcomming discussions that the polynomial a is relatively

n
prime with b as well as with Bz °.
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4.4. Solution to the fundamental equation:

We will need the following lemmas.
Lemma 4.4.1: If the polynomial a is relatively prime with b

n
as well as 53-‘ then neither a nor & can have a factor in
common with the polynomial 33 c e,

Proof: Since & is scattering Schur & cannot have z, as a
factor for any i. Also by rewritting equation (4.3) along
with c=c’c” in the form of (4.11)

n R "
ad=b(Bz ) + (28 crar)(c 2"zl (4.11)

it can be seen that if & or a had a factor in common with the
polynomial (c’C'gﬂng then it would also have a factor An
common with the b(Bz %) i.e., in common with either b or Bz 2
both of which is ﬁuled out by the fact that a is relatively
prime with b and Bz 2.

Lemma 4.4.2: If the polynomial triple (a",8",8’)is a solution
to the fundamental equation then degia”gnz. Furthermore,
there exists a polynomial a’ given by (4.12) such that the

n”" n"
polynomial triple (B"2” ,a"z , -a’'d’) is also a solution to
the fundamental equation. Also, we have that deqia'gn; for
all i=1 to k.

a'=(@"c'2'+z2° 2 B'b) /8 (4.12)

Proof: The fact that deqia'gn: follows directly from the

fundamental equatio' for the «tripie . a", 8", 8''. Next, by
stra:ghtforward algebhra:: manigiiati~ s win “he fondame~c
egqua~.-rn § - 17,87, 8° L Sae iy 4 03 tre

following.
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n” n

- * - - -n" Ea -
2 (aa"-d’'bB")=(z c"Z)(a"%’c’+z — B'b)z "/a (4.13)

Since the left hand side of (4.13) 1s a polxnomxal due to
lemma 4.4.1, 4 must divide (3"E'c’+z 2 B'b)z °.
(4.12) is a polynomial. The fact that degia <n! then follows

Thus, a’ in

by considering the degree restrictions on ¢’, ¢", a", b, and
8’ and a.

Lemma 4.4.3: IS the polynomial a is relatively prime with b

as well as Bz a' and ‘“i'ﬁi'ﬁi’ and (“5'55'85) are two

polynomial triples satisfying the fundamental equation then
the rational function given in (4.14) is a constant.

n ” [ ] " n" ” "

Proof: By multiplying the fundamental equations for
(ai,ﬁi,si) and (“5'55'55’ respectively by “5 and (-a{) and
adding the resulting equations one obtains equation (4.15).

" (a"B"—ea"A" u{ A’ a"-a™AR’ E"nn
d (alﬂz azﬁl) (Slaz “152)(5 c"e")/a (4.15)

Since the lefthand side of (4.15) is a polynomial, by
invoking lemma 4.4.1 it then follows that a must divide the
polynomial P'(Bi°5'°ieﬁ)‘ Since degiP5n£+n;-nai
i=]l] to k we have that P/a is a constant. The result then
follows by noting that the expression in (4.14), in view of
(4.15), is equal to (Pd’/a).

-degia €or all

Lemma 4.4.4: Iﬁ the polynomial a 1s relatively prime wizh ©

as well as bg—'. and (a®, 8", B8’) 1s a8 polynom:a. tr.p.e

satisfying the fundamental equat:icn then the express.cn 3g..en
in (4.16) 1s a constant.

a.-an-e..s-- t..ﬁy. . e
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Proof: Follows from lemma 4.4.2 and lemma 4.4.3.

Lemma 4.4.5: If the polynomial triple («",8",8’) 1is a
solution to the fundamental equation then there exists an af

as given by lemma 4.4.2 such that (pa"+q5E B",

pﬁ"+q39 ",

pB’'-qda’) is also a solution to the fundamental equaticn,

where p and q are arbitrary complex numbers.

Proof: Obviously follows from lemma 4.4.2.
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4.5. Pactorization of the discrete 1lossless two-port

transmission matrix:

Two polynomial triples (ci,ﬁi,ﬁi) and (“5'55’55) each
satisfying the fundamenatal equation will be said to be
linearly dependent if there exists constants p and g not
simultaneously zero such that p¢i+QGilpﬁi+ q851p5i+qﬁilo.

Also, a solution («",8",8’) to fundamental equation will be
said to be nonsingular if «"c"Ag"B".

The following two theorems constitute the major results of
this report.

Theorem 4.5.1: Assuming ﬁhat the polynomial a is relatively
prime with b as well as Bz 2, the problem of factorization of
discrete lossless two-port transmission matrix T admits a
solution if and only if there exists a nonsingular solution
(a",8",8’) to the fundamental equation.

Proof: Necessity is obvious. If («",B8",8’') is a nonsingular
solution to the fundamental equation then due to lemma 4.4.5,
a“-pc'+qgﬂna", b"-p6"+q£2'8", b’wpf’-qda’ is a solution to
the fundamental equation. Straightforward algebraic
manipulation then yields that

(a"8"-b"B")/c"&"=(|p|%-1qI )k (4.17)
where K=(a"a"-g"B")/c"&" (4.18)

Since due to lemma 4.4.3 and nonsingularity of («",8",8'), K
is a nonzero constant, by proper choice of p and q in the
right hand side of (4.17) it 1is possible to have
(a"3"-b"B" )=c"C".

L "
Furthermore, there exists a’ such that (6“35 ' é"gﬂ . =a'd),
by victue of lemma 4.4.2, satisfies the fundamental

3
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equation. It can then be verified via routine algebraic
nanipulatibn that the pair of two-tuples (a’,b’) and (a",b")
satifies the algebraic equation, and thus, due to theorem
4.3.1, is a solution to the problem of factorization of T.

Theorem 4.5.2: Assuming that the polynamial a is relatively
prime with b as well as with Bz >, the problem of
factorization of discrete 1lossless two-port transmission
matrix T admits a solution if and only if there exists two
linearly independent polynomial triples ‘(a;,ag,ﬁi), i=1,2
each of which satisfy the fundamental equation.

Proof: Necessity is obvious. If one of the solutions
(“;'5;'5i)' i=1,2 is nonsingular then sufficiency follows
from theorem 4.5.1. If both solutions are singular then the
triple (a",b",b’) obtained as: a'-pai+qs&, b'-pﬂi+q55,
b'-p6i+qaé, where p and g are complex numbers, satisfies the
fundamental equation. Algebraic manipulation then yields that

(a"8"-b"B")/c"&" = L + L (4.19)
L= p*q(agai-agag)/c"a" (4.20) -

By invoking lemmas 4.4.2 and 4.4.3 it then follows that L in
(4.20) is a constant, and thus, UL=L*, Furthermore, by
following arguments similar to those in [5] it can be proved

via the use of results in (7] that L#0 if p#0 and q#0. (The .

details of this derivation is left out of here for the sake
of  brevity). Consequently, by proper choice of p and q in
(4.19) and (4.20) it is possible to have a"3"-b"B"=c"Z". The
rest of the proof follows by imitating the last paragraph in
the proof of theorem 4.5.1.

The fundamental equation (4.6), when considered as a set of
linear simultaneous egquations involving the coefficients of
the polynomials a", b", b’, along with the upper bounds on
their degrees, turns out to be overdetermined in general.
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More explicitly, we note that the unknown polynomials a", b"
and b’ contain a total of u unknown coefficients, whereas the
total number of linear simultaneous equations can easily be
found to be equal to e, u and e being as given in (4.21) and
(4.22) below. .

k k
us=21 (n;+1) + I (ni+1) (4.21)
i=l i=1
k
e = 1nl(Zn; + ni + 1) (4.22)

Since for k>1 we have e>u in a generic situation a solution
to the problem may not exist.

Furthermore, in order for the digital network so synthesized
to be ‘computable’ it may not contain delay free loops
arising from cascading of two elementary sections. In spite
of the fact that it is known (8] that this problem can always
be circumvented, at 1least in the one-dimensional case, by
incorporating digital equivalents of unit elements it is of
interest to note that by properly utilizing the flexibility
in the <choice of p and q in (4.20) it is always possible to
avoid the occurrence of such délay free loops in the filter
structure. This point is further elaborated in the following
section.




4.6. One-dimensional synthesis as a special case:

In the one-dimensional case i.e., if k = 1, a closer
examination of (4.21) and (4.22) reveals that we have u-e=2,
and, therefore, there are two more unknown coefficients than
the number of 1linear equations in the set of linear
simultaneous equations which determine the solution to the
fundamental equation. Thus, there are at least two linearly
independent solutions of the fundamental equation, and in
view of theorem 4.5.2, the problem of factorization of T
always admits of a solution. Consequently, structurally
passive synthesis for T is achieved by performing a sequence
of further factorizations of T’ and T" into discrete lossless
transmission matrices of progressively 1lower complexity,
until a stage is reached when each of the teéulting
transmission matrices cannot be factorized any further. This
latter situation corresponds to the case that each of the
two-ports resulting from the decomposition satisfy deg a = 1,
deg ¢ <1 and deg b < 1. However, if the specified two-port
transmission matrix T has real coeifficients for its
numerator and denominator polynomials and realization
involving only real multipliers are sought then the
constituent two-ports may also be of the type deg a = 2, deg
¢ = 2, and deg b £ 2. Two-port sections of the above types
will be called elementary sections and can in turn be
realized in structures possibly other than the cascade
structure by exploiting synthesis techniques as discussed,
for example, in [4].

To address the issue of absence of delay free loops at the
junction of the two-ports associated with T’ and T" it may
be noted that the only restriction governing the choice of
the numbers p and q is that the right hand side of (4.17) or
(4.19). be equal to one. This flexibilitv in the choice of p
and g may thus be exploited to make b"(0) = 0, which ensures
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the absence of the delay free loops of the type mentioned
above. Purthermore, since & is Schur and thus &(0)=0, it
follows from (4.5b) that if b(0)=0 and b"(0)=0 then b’(0)=0.
This fact gaurantees that the original two-port can be
decomposed into cascade interconnection of elementary
two-ports in such a way that the b-polynomial associated with
each of the constituent two-ports, except possibly the one at
the extreme left, is equal to zero for 2=0. Absence of delay
free loops from each junction is thus gauranteed.

Realizations for elementary sections with deg a=l, deg ¢ < 1,
deg b < 1 and bD(0)=0 as interconnections of Gray-Markel
sections and delays are shown in figures 4.4 and 4.5.
Gray-Markel sections of two different kinds used in these
figures are shown in figures 4.2 and 4.3. An elementary
section with deg ¢ = 2, deg a = 2, deg b < 2 and b(0)=0 is
shown in figure 4.6. Thus, an arbitrary lossless two-port can
indeed be synthesized as a cascade interconnection of these
elementary sections only. It turns out that elementary
sections just referred to are exactly the same as those
discussed in the literature [1],[2],(3]).
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4.7 Conclusions:

A simple algorithm involving the examination of rank of a set
of linear simultaneous eqgations for studying the
synthesizability of an arbitrary multidimensional lossless
two-port in a cascade structure has been derived via
factorization of the associated transmission matrix T. It
turns out that under a generic situation synthesis in a
cascade structure may not be feasible. In the special case of
one-dimension the algorithm provides a new method of
realizing structurally passive filters directly in the
digital domain. The problem of multidimensional synthesis,
though not necessarily in cascade structure, can also be
addressed via factorizations of hybrid matrix or the tranfer
function matrix associated with the lossless two-port. The
class of multidimensional lossless two-ports thus
synthesizable along with the class identified in the
present study would thus broaden the whole class of
synthesizable multidimensional structurally'passive lossless
two-ports. It may be remarked that even though in the k>l case
synthesis may not be feasible for an arbitrary discrete
lossless T, the possibility of synthesis for special classes
of discrete 1lossless T is by no means ruled out. This is
especially true in view of synthesizability of certain
classes (9], (10]) of two-dimensional continuous time systems
arising in studies of lumped-distributed netwoks. The class
of multidimensional discrete lossless two-port transmission
matrices T, which admits of such synthesis remains, however,
to be identified.

gl i 5
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CHAPTER 5

MULTIDIMENSIONAL INTERPOLATION AND DECIMATION
SCHEMES FOR FAST IMPLEMEMNTATION

5.1. Introduction

The processes of sampling rate increase and sampling rate
reduction commonly referred to as interpolation and
decimation, are required whenever it 1is necessary to
change from one sampling rate to another. The fact that
many commonly encountered one-dimensional signal
processing tasks such as speech processing, single side
band frequency multiplexing require the processes of
sampling rate change is now well known (3]. Similarly a
large number of multidimensional signal processing [5]
tasks also require the operation of digital interpolation
and decimation. Such  application areas include
transmission of television pictures (13), antenna
beamforming (5], target tracking (1], astronomical data
processing [l17] geophysical signal processing (16]), and
medical tomography ([9]. We point out exactly how the
specific problem of multidimensional sampling rate
alteration enters into some of these applications. In
radio astronomical observations it is often desirable to
estimate the radio brightness of the sky at intermediate
points from observations made by directing the measuring
antennas at a regular array of points in the sky [17]); in
the problem of transmission of television pictures
efficient coding schemes require that the time-varying
image signal be known between two successive picture
frames (13]; whereas in X-ray computed tomography the
problem of interpolation manifests itself when a higher
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resolution in reconstruction is necessitated [9]. Similar
other examples of need of multidimensional interpolation
‘as well as decimation schemes can be drawn from these and
other application areas mentioned earlier. A feature
common to all of these multidimensional processing tasks
is the enormous amount of computational requirement. This
fact becomes especially prohibitive to practical
. implementation if real time or adaptive applications are
called for.

On the other hand, recent advent of VLSI technology has the

?’ potential to make such computation intensive
iﬁ' multidimensional signal processing tasks by increasing the
Q‘ throughput rate wvia wutilization of new concepts such as

parallelism, pipelining, concurrency modularity of
implementation etc. (8]. The more recent optical

g, technologies (2] provide yet another potential means for
g; highspeed implementation of many multidimensional signal
" processing algorithms. 1In this context, the need for
A reconsidering existing signal processing algorithms as
R well as that of designing algorithms for previously
b

intractable problems have already been recognized in
general [1l1], and both new computational schemes and their

ﬁ. implementations in hardware for solving specific
:{j rultidimensional signal processing tasks are now beginning
é‘ to emerge ([6] (12]. It is in this perspective that the
DL general problem of designing an algorithm for
g interpolation and decimation of a broad class of
;g multidimensional signals is investigated in the present
ﬁ; report.

Q@ For the type of applications under consideration, it is
?u important to understand the processes of interpolation and
Eﬁ decimation from the point of view of digital signal
’;5
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g

i -101-

4

*!

LTSI I TS TS T R T R T ST L S SR ~, . . -
2 €0 aladnt SR oy ‘o dn u'"\.“; Pty '.'_:.\J'"

i



processing rather than from numerical analysis standpoint.
For example, linear interpolation is not satisfactory in
most digital signal processing tasks. In classical
numerical analysis, the inadequacies of polynomial
interpolation schemes such as the multidimensional
Lagrange type interpolation method lead to the use of
higher order polynomials, the inappropriateness of which
' has been pointed out in ([3) in the one-dimensional
context. In the present study we consider the problems of
interpolation and decimation based on the frequency domain r
description of the multidimensional signal. It then turns
out that, as has already been discussed in the literature
for one-dimensional signals (31, the problem of
interpolation and decimation of multidimensional signals
can also be interpreted as linear filtering operations in
the frequency domain. More importantly, the filtering
scheme leads to computational structures, which is highly
modular and derive £full advantages of parallel and
pipeline implementation. Performance of the computational
algorithm so designed is also examined by experimenting
with both real and synthetic two-dimensional signals.

In section 5.2 the notation, terminology and the sampling
schene to be used for the rest of the report |is 1
introduced. The problems of interpolation and decimation
are formulated, and the filtering schemes leading to their !
i
d
o

solution are discussed in section 5.3. The fact that such
computational schemes can be implemented by exploiting the
concepts of both parallelism and pipelineability forms the

contents of section 5.4. Some filter design examples of
interpolators and decimators and their performances on
image data are presented in section 5.5 and in section 5.6
conclusions are drawn.




§.2. Multidimensional Periodic Sampling

Of the several ways to generalize [5] one-dimensional
(1-D) periodic sampling schemes to multidimensions (N-D)
(N22), the most straightforward, although not the most
efficient {15}, is periodic sampling in rectangular
cartesian coordinates, which we will simply call
rectangular sampling.

In what follows underlined characters will be used to
denote column vectors and the notation "’" will be used to
denote the transpose of a vector. For example,
T'=(Ty,T9,...Ty), where T is a column vector. Similar
notations will be used for variables such as t, 2, w, W,
n, k etc. the later physical meanings of which will be
made clear when the context arises.

If x,(t), 1is a multidimensional continuous signal, the
discrete signal x(n) obtained from it by rectangular
sampling is given by:

x(n)=x,(n T ,nyTy,...nyTy) (5.2.1)
where Tl,Tz,...TN are positive constants known as the
sampling intervals or periods in the respective sampling

directions.

The N-D Fourier transform X, (2) of the continuous signal
X,(t), and its inverse are given in (5.2.2a,b).

® -3(2.°) 2 = j(g.t")
xa(g)-ioxa(g)e dt; x,(t)=(1l/4x )_{.xa(g)e dt
(5.2.2a,b)

The discrete sequence x(n) obtained by sampling xa(E) at
spatial locations t;=ny Ty i=]l to N can then be obtained
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as in (5.2.3a), whereas the Fourier transform of x(n) is
given by X(w) in (5.2.3b).

2.® -j(R.t’") j(w.n’) .
x(n)=(1/4r%)] X,(Q)e dR; x(w)=Ix(n)e

- n

= (5.2.3a,b)
We assume that the signal x,(t) is bandlimited. More
specifically, we assume that the Fourier transform xa(g)
have a support which 1is contained in the hypercube
|91|<w1<- for i=1 to N in the N-dimensional frequency
space i.e., xa(g)-o for lailawi, i=1 to N. It then follows
from the multidimensional version of the Nyquist sampling
theorem (5] .that the continuous signal x,(t) can be
recovered from the discretized multidimensional signal

x(n) according as equation (5.2.4), in which T;<n/W,.

N .
xa(S)'tz‘ X(E) n ISin(’l/Ti)(ti‘niTi))/(nﬂi)(ti-niri)]

=1 (5.2.4)

Equations (5.2.1) and (5.2.4) taken together, form the
basis of the multidimensional sampling theorem in
rectangular cartesian coordinates.
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5.3. Multidimensional Sampling Réte Conversion

The process of sampling rate conversion is one of
converting the sequence x(n) obtained from the sampling
of the bandlimited signal x,(t) with periods T,, to another
sequence y(m) obtained from sampling xa(g) with periods T{
for each i = 1 to N. Conceptually at least, the most
straightforward way to perform this conversion is to
reconstruct x,(t) (or the low-pass filtered version of it)
from the samples of x(n) and then resample x, (t) (assuming .
that it is sufficiently bandlimited for the new sampling st
rate) with periods T{. i=1 to N to give y(m). For any m,
the value of y(m) can be then obtained as:

y(m)=x, (t) for t;=m,T{, i=l to N (5.3.1)

By substituting (5.3.1) into (5.2.4) and renaming the
variables n as k, we have:

N
y(m) = L x(k) I sin(r((m;T{/T,)=k;))/R((M;T{/T )=k;) e

k1=t (5.3.2) RO

5.3.1 Interpolation of Multidimensional Signals gs*
A Ny

If the sampling rate in the i-th dimension is increased by e?@

an integer factor Lo then the new sampling period T{ for
i=1l to N are given by

T{/T;=1/L; (5.3.3) 2%

KRS

This process of increasing the sampling rate ~
(interpolation) of a signal x(.) by L; implies that we

must interpolate (Li-l) new sample values between each :_‘

pair of sample values of x(.). By substituting (5.3.3)
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into (5.3.2), (S5.3.4a) 1is obtained, in which h,(s;) for
integer values of S i=i to N are given in (5.3.4b).

N
y(m)= : X(E)iglhi(mi°kiLi)’ hi(si)-sin(usi/Li)/(nsi/Li)
X (5.3.4a,b)

An alternative formulation of equation (5.3.4a), as given
in (5.3.6), can be obtained via the introduction the
chahge of variables:

ki'lni/LiJ -n;, for i=1 to N (5.3.5)

wvhere lu] denotes the integer less than or equal to u.

N
y(m)= : x(lg/&-g])iflhi(mi-lmi/nij.Li+niLi)

I h(nL,+n 0L, )x(ln/L-n]) (5.3.6)

15 o
[
[ ]
-

where m; 0L, denotes the value of L modulo L; for i= 1 to
N and the notation lm/L-n] is taken to mean the N-tuple of
integers s=(s;,s,,...s,) with s =lm, /L J-n;, i=1 to N.
Equation (5.3.6) expresses the output y(.) in terms of the
input x(.) and the set of one-dimensional sequences hi(’)
i=l] to N, as given in (S5S.3.4b). Thus, in a compact
notation y(m) can be written as in (5.3.7a), where gp(n)
is as expressed in (5.3.7b) for all N-tuple of integers m
and n.
N
y(m)=Z g (n)x(lm/L-n}); g, (n)= 8 h (n;L ,+m,L,)
L = i=1 (5.3.7a,b)

Note that g.(g) is periodic in =y with period L; for each
i=l to N. Purthermore, by referring to (5.3.7b) it follows
that gn(g) is a product separable function, and each of

its factors are periodic in m,

i with respective periods L

i.eu'




N
gain)= 1 gmi(ni) ; gmi(ni)-hi(nini+nioni) (5.3.8a,b)
where (5.3.8b) holds for each i=1 to N. Thus, by using
(5.3.8a), (5.3.7a) can be written as (5.3.9).

y(m)= t g )eoo £ g (ng)x(lm/L-n)) (5.3.9)

ny=- "N N n,=-e"1 1 ,
An alternative formulation of equation (5.3.9), which
yields the implementation of the equation in digital
filtering terms is given in equation (5.3.10).

(1)
y (ml,...mi,vi+1,...\’n)

- (i-1) '
- I gm (ny)y (Bysoeemy_q,lm/Lil-ng vy q0eeavy)
Ry==e (0) ~ (5.3.10)
for 1<i<k, where y (.) = x(.)

Note(Nshat (5.3.10) tagether with (5.3.9) yields that y(.)
-y (.). Thus, output y(m), as given in (5.3.9), can
also be computed via ( 9e recursive construction of the
intermediate signals vy (.), for 1 ¢ i ¢N. Furthermore,
for each i in 1l i ¢ N, (5.3.10) can be interpreted as
the input-output equation of a one-dimensional spatially
varying filtgt aperat%ggl)on the i-th dimension of the
intermediate signal vy (.), whose impulse response is
periodically space varying with a period equal to Ly- A
closer examination of (5.3.10) reveals that (5.3.10) can
be digitally implemented in N stages as shown in Figure
5.1, where the i-th stage represents a set of one-
dimensional filters opgciting on the i-th dimension of
intermediate signal vy (.), one for each value of the

indices m,,...m, ;,V; ;+...V, to produce the next

(1)
intermediate signal y (.). In the special case, when N=2
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i.e., for two-dimensional image signals, for example,
(5.3.10) can be written as follows.

[_J
y(l)(-l,vz)- L gnl(nl)x(lml/Llj-nl,vz) (5.3.11)
n,s-o
1
y(.l'.z’-y(z)(.l'.z)
-t g (npy'Pim,lay L don,)  (5.3.12)
n,'M27Y 1/ tRp/h2d=0 e
Equation (5.3.11) represents a one-dimensional

interpolator which interpolates the rows of the given
input image x(.). This row interpolation is performed on
each row of the input signal x(.) and the results are
stored in an intermediate image signal y(l)(ml,vz). The
second step is an implementation of (5.3.12), which
amounts to performing the operation of interpolation on
the coluans of the intermediate image y(l)(.). The entire
process, therefore, can be implemented in two stages of
1-D interpolations. It must be noted that by rewriting in
(5.3.9) the order in which the summations over different
indices are considered, it is also possible to perform the
column interpolations first and the row interpolations
next.

5.3.2 Decimation of Multidimensional Signals

The process of reducing the sampling rate (decimation) of
x(n) by an integer factor N, in the i-th dimension, is
considered next. If Ti/?i-ni/l for i= 1 to N then the new
sampling rate is given by ri-l/ri-l/niti-ri/ni.

In order to lower the sampling rate and to avoid aliasing
at this lower rate, it is necessary to filter the signal
x(n) with a digital low-pass filter whose unit impulse




response is denoted by h(n). The sampling rate reduction
is then achieved by forming the sequence y(m) by saving
for each i in 1 ¢ i < N only every M ,-th sample in the

i-th dimension of the filtered output.

If h(.) denotes the N-D impulse response of the ideal
low-pass filter then it follows that the signal at the
output of the low-pass filter is given by :

win)= : h(k)x(n-k) (5.3.13)
Furthermore, if y(m) is obtained by considering every
Hi-th sample in the i-th dimension of the signal w(n) then
y(m) is given by (5.3.14), where the notation x(M.m-k) is
taken to mean *("1'1‘k1'“2“z kz,...nNnN-kN).

y(m)=[{w(n)] =L h(k)x(M.m-k) (5.3.14)

ng=mifi
If the frequency response of the ideal low-pass filter
having impulse response h(n) is given by (5.3.15) then
h(n) is product separable (5] and can be written as in
(5.3.16).
1l for |u1|<u/ui, for i=s 1 to N
H(w)={ (5.3.15)
0, otherwise
N
h(g)figlhi(ni); hi(n;)=sin(xn,;)/kn, for i= 1 to N
(5.3.16a,b)
Making use of (5.3.16) 1in (5.3.14) it follows that the
output signal from the entire decimator y(m) can be
written as in (5.3.17).

y(m)=L B’ (kg )...L h*(ky)x(M.mek) (5.3.17)
ky ky

AR



Purthermore, as for the interpolator we note that the
output signal y(m) can be computed via the recursively
defined intermediate signals y(i)(.), 1 i <N as given
in (5.3.18) below, where y(o)(.) = x(.). We then have
y(m)=yN (m).

(1)
) 4 (-1""'1'“i+1""vn)'

:1 ne (k) T g, omy ek ay) (5.3.18) i
Clearly, for each i equation (5.3.18) represents the

operation of performing 1l-D decimation in the i-th :
direction of the intermediate signal y(i'l)(.). as a :
result of which the next intermediate signal y(i)(.) is
obtained, and the computation of y‘'1)(.) in (5.3.18) for
values of i= 1,2,...N correspond to the implementation of
N stages of such 1-D decimators in succession. For
two-dimensional signals, for example, i.e., if N=2 the p
entire operation can be interpreted as first decimating .
the rows of the discrete signal and then decimating the
columns of the resulting signal obtained from the output
of the f{irst stage.

Pl B

Ty WYY

u.‘.
.
v
o
-
-1l10-
“
~
N
A At s N N e e N e N S L NS 5 e e WS M LN A L N NN N N N N ~ "
KA R {aTaly "y AP L\ Y, X ate ." o o i W oo " Ty e < o’ "\*\\ \‘.\ ‘ .*.




o

l Ry

S.4. High Speed Implementation of Interpolators and
Decimators

We note that (5.3.10) and (5.3.18) are the basic equations e
for implementation for N-D interpolators and decimators,
which can be implemented in N decoupled stages. Each such "
stage, in fact, consists of a set of 1-D interpolation or ;
decimation filters. In this section the fast computational
scheme associated with (5.3.10) and (5.3.18) that results
in this highspeed implementation will be discussed. It
will be shown that the set of 1-D interpolators as well as v
the decimators just referred to can be implemented by ¢
using certain types of 1-D interpolators or decimators
known to be the polyphase filters (3] as our basic module
of implementation. Only nonrecursive implementations of
this basic module will be sought in the present study. ﬁ

We first consider the i-th stage of implementation of the
interpolator. Similar considerations apply to each such
stage. The impulse responses 9 (ni) of the 1-D filters :
mentioned in the previous pafagtaph, by virtue of 'f
equations (5.3.8b), are periodically shift varying in my ~
with a period L;. Due to this, for any fixed set of values
of m,,...m; _;,9;,1+---Vy the computation of y(i)(. ‘f

‘e

) can be
carried out via the use of L1 different shift-invariant
filters in such a way that each filter provides every

Li-th sample of y(i)(.) in the i-th dimension. ﬁf
Consequently, for a given value of i as shown in Figure )
5.3, the entire filtering operation represented by ?;
(5.3.10) can be implemented as a parallel interconnection -
of Li different shift invariant filters having y(i°1)(.) ™~
at its input, followed by the process of sampling rate Q%

expansion by a factor of L, i.e., insertion of (L;-1)

RS SUNTRTCL N,
%% i 'y

AR G W S G Pal DS S s N P O S (NP IR
PR RLIB A WL RN S e Sy SN P ds A A . \" Pl

~h A P



PG PN PULSEE PR PO S TR TR Y

zeros between two consecutive samples in the direction m, .
Pinally, for each j=1 to (Li-l) the output from j-th such
shift invariant filter is shifted j space units, and the
resulting signals are added to obtain y(i)(.).

Similar implementational considerations also apply to each
of the N stages of the decimator. By making the
substitution ki"i"i*’i in (5.3.18) it follows after some
algebraic manipulations that (5.4.1) tom (5.4.3) hold

true.
y(i)-(ul,...ni,vi;l,...vu)
M. -1
- i ; p. (r )y(i'l)(m m m,-C,,V v,,)
P S i7°°°7i-1""1 "i"7i+l’""" N
’1'°i‘i"' i - (5.4.1)
(i-1)
where y“i (Bmy,ocemy 4 oBi=C )V 10e0eVy)
(i-1)
- Y (mi,...mi_l,miﬂi-pi,\)i+l,...VN) (504-2)
and ppi(‘i)'h'(m1"i+°i) for pi-o,l,...(ui-l) (5.4.3?

Thus, for fixed integer values of BipeeeBy _gr Vi 1000 Vy
(5.3.18) or equivalently (5.4.1) to (5.4.3) can be
implemented as a parallel connection M; 1-D filters, one
for each value of Py and having impulse responses as
given in (5.4.3). Note that the input ygi-l)(.) to the
p;-th such filter is obtained from y(i'l)(%) by shifting
the samples by an amount Py and then by considering only
every Hi-th sample. The resulting scheme for

implementation is shown in Figure 5.4.
It is important to notice that for intffgolation as well

as for decimation the computation of y (.) in (5.3.10) S

and in (5.4.1) for different values of Myseee@ g0
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Vis1ree-Vy are completely independent of one another, and
thus can be . carried out concurrently. For each value of
the set of (N-1) tuples just mentioned it would thus be
necessary to have an identical copy of the filter
described in Figures 5.3 or 5.4 the required number of
such copies is obviously determined by the size of the

(i-1)
support of the signal y (.).

Purthermore, in spite of the fact that as shown in Figure
$.1 and 5.2 the entire scheme is to be implemented in N
decoupled stages, a thorough examination of the
computational scheme reveals that it is at 1least in
principle, possible to begin partial computation of
(1+1) (i+2)

intermediate signals vy ('li) Y (.)ye.. etc. even
before the computation of vy (.) 1is completed, thus
potentially resulting in further speedup in arithmetic. To
exemplify this situation in the 2-D case, it may be
noticed that since the copies of row interpolators all
operate in parallel - each on one row of the input image -
if each row interpolator is made to sequentially process
the rows from the same edge of the picture frame then as
computati?g) proceeds, the columns of the intermediate
signal vy (.) begin to make themselves available to the
colunn interpolatOt(l?f the succeeding stage even before
the computation of y (.) is completed.

In what follows the implementation of the 1-D shift
invariant filters S (“i) for the interpolator or the
P, (r;) for the doci&ators will be sought in direct form
nofirecursive (FIR) structures. Other structures can be
also used, but our choice is motivated by the particular
nature of the interpolation and decimation filters, which




makes the design of FIR structure especially simple as
well as by the fact that such structures can be
conveniently implemented in systolic (pipeline)
architecture (2] [(10]. Figqure 5.5 shows an example of such
an 1-D nonrecursive structure, which occurs in each branch
of the polyphase filters for the case when the filter
order is equal to Ng- Since the design of such 1-D filters
is extensively documented [4]) in the literature we shall
not undertake the discussion of this issue here, but only
highlight the fact that by multidimensional sampling rate
alterations can be performed at a higher speed by
exploiting in parallel several copies of the type of 1-D
filter structures discussed in existing signal processing
literature. Reduced computation time may thus be achieved
at the expense of increased amount of hardware
requirement. Furthermore, it may be noticed that for the
implementation schemes under consideration the entire
interpolator or decimator have a high degree of
modularity. .




5.5. Degign examples in two-dimensions.

It follows from equations (5.3.8b) and (5.4.3) that the
impulse responses : (ni) and P, (ni) which constitute the
respective branches sf the 1-D pslyphase filter structures
for the interpolator and the decimator are space shifted
versions of impulse response of an ideal low-pass filter.
In the following design examples the window method of
designing FIR filters was used for realization of the
impulse responses just mentioned. The Kaiser window was
used for each of the following examples, in which &=ripple
in the passband and stopband from ideal response;
uc-highest frequency of interest in the input signal;
up-passband edge fregquency; ws-stopband edge frequency;

and No= required filter order. The details of design can

be found in [14].

Interpolator: L=2,

The following choices are made §=0.1, uc-.65u, wp-wc/ZL,
wg=n/L. Then NO-S. The resulting polyphase filter was used
in each of the two stages of implementation. The
performance of the interpolator was tested for three
different test signals: (Sl) x(nl,nz)-sin(r)/t, . where
r=/(ulsv?) with u, ve 0,41, +2,...+25 as shown in Figure
5.6a; (S2) the "Jet" image of size 64 x 64 pixels, with ¢
bits/pixel resolution as shown in Pigure 5.6b; and (S3)
the "Saturn" image of size 64 x 64 pixels, with resolution
4 bits/pixel as shown in Figure 5.6c. The interpolated

signals are shown in Figures 5.7a, 5.7b and 65.7c

respectively.
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L=3. Again 8=0.1, w =.65m, wp-wc/ZL,'us-n/o.aL, No=5S., and
Figures 65.8a, 5.8b, and S5.8c show the result of the
interpolation scheme corresponding to input signals S1, S2
and S3 respectively.

Decimation: M=2.

The following parameters were chosen for each branch of
the polyphase filters of the basic module for each stage.
§=0.7, w.=.65%, w =w./1.3M, w =x/M. Consequently N,=9. The
composite filtering scheme was tested on the following set )
of test signals. (T1) x(ny,ny)esin(c)/r, where r-/(u2+v2),
u, v= 0, #1, +2,...+75 as shown in Figure 5.9a; (T2) the Ay
128x128 pixel, 4 Dbits/pixel "Jet" data as displayed in
Figure 5.9b and (T3) the 128x128 pixel, 4 bits/pixel

b

"Saturn”" data as displayed in Figure 5.9c. The respective :
decimated signals are shown in Figures 5.10a, 5.10b, and h
§.10c. _
M=3. Here §=0.1, uc-.GSn, up-mc/ZL, us-u/.BL. Consequegtly I?
NO-S. The input signals are: (Ul) same as in (Tl) above; ';
(U2) the 192x192 pixel, 4 bits/pixel "Jet" data of Figure -
5.8b and (U3) the 192x192 pixel, 4 bits/pixel "Saturn"” .
data of Figure 5.8c. The corresponding decimated signals ;
are as shown in Figures 5.10a, 5.10b and 6S.10c "
respectively. -
All progams were written in a DECl0 computer in sequential o
mode as opposed to parallel/ pipeline modes suggested in "
the present study. ?;
N

P

¢

Al

R
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5§.6. Conclusion

Motivated by practical applications, a highspeed computing
scheme for the interpolation and decimation of a broad
class of multidimensional signals, which can potentially
derive advantages from parallel, pipelined and modular
implementation has been proposed. Only interpolation or
decimation by integer factors are discussed, but sampling
rate alterations by non-integer rational factors can also
be performed via the techniques discussed by cascading in
two successive stages interpolators and decimators of the
type discussed here. The computational scheme is based on
the frequency domain description of the signal, and uses
one-dimensional interpolation or decimation filters as a
basic module for implementation. Only nonrecursive
implementation of this basic module has been considered in
the present study. Apart from the ease of design and
convenience of pipelineability, the <choice of such
structure may have advantages in applications such as
image processing, where linear phase is a highly desirable
characteristic of the processing scheme. The signal has
been assumed to be sampled according to the rectangular
cartesian sampling scheme. Other sampling geometries as
multidimensional (N>2) generalizations of the hexagonal
sampling scheme [15] prove to be more economical in terms
of the number of samples per wunit volume required to
represent a bandlimited signil. Interpolation and
decimation schemes for multidimensional signals sampled in
such geometries and their implementation in currently
emerging highspeed architectures remain, however, to be
investigated.
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CHAPTER 6

CONCLUSIONS

Simple and rigorous proofs of results on tests for the
property that a multivariable polynomial be devoid of zeros
in the <closed unit polydisc are given. The proof technique
rests on a complete formulation of the fact that the zeros of
a polynomial are continuous functions of its coefficients. It
is shown that all other stability related results can be
derived in this manner.

New classes of multivariable polynomials arising in studies
of passive multidimensional systems have been identified and
their properties have been studied. In particular,
polynomials occurring as the numerators and denominators of
multivariable reactance functions and positive functions are
characterized. Related properties of these and other classes
of multivariable Hurwitz polynomials are also studied. A
nontrivial test for the property of positivity of rational
functions, holomorphic in a domain, in terms of their
behavior on the distinguished boundary is formulated.

The problem of structurally passive synthesis of
multidimensional digital filters as a cascade interconnection
of more elementary building blocks has been addressed via the
factorization of the associated discrete lossless two-port
transmission matrix. Necéssary and sufficient conditions for
the factorization to be feasible are obtained. In particular,
it is shown that in one-dimension the factorization can
always be performed, and as a consequence, known filter
structures fall out as special cases of the results
developed. Thus, an alternative algorithm for synthesizing
one dimensional structurally passive digital filters is also
obtained.
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The problem of sampling rate alteration of deterministic
multidimensional signals is addressed on the basis of
frequency domain description of the signal. It is shown that
the problem can be formulated in such a way that solutions
can be obtained via filtering techniques known for
one-dimensional signals. Fast non-recursive implementations
of such interpolation and decimation schemes are
investigated. The resulting algorithms can be potentially be
implemented in a combination of parallel and pipelined
architecture. Experiments with digitized images are also
reported to demonstrate the performance of the designed
interpolation and decimation schemes.

The fundamental results developed in the‘present report open
up ways of investigation into a large number of problems of
both theoretical and practical importance in the area of
multidimensional signal processing. Efficient test procedures
for the various classes of polynomials identified in chapter
3, namely the scattering Hurwitz, reactance Hurwitz and the
immittance BHurwitz polynomials etc. are licking and needs to
be developed. Since polynomials of this type, particularly
the scattering Hurwitz polynomials, enter into the
description of passive systems in a fundamental manner, this
should prove to be an important step in designing various
types of multidimensional filters. 1In this context, a
detailed study into the properties of discrete domain
counterparts of the various multidimensional polynomials
discussed in chapter 3 and their testing procedures also
remain to be carried out. In the area of synthesis of
structurally passive multidimensional digital filter design
the problem has been addressed only in the context of
synthesis in cascade type structure via the factorization of
the transmission matrix associated with a multidimensional
lossless two-port. Other possibilitiez of investigating
synthesizability of lossless multidimensional two-ports in
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structures other than the cascade structure also exist, e.qg.,
via the factorization of the hybrid matrix or the transfer
function matrix itself. The need for this investigation is
strongly felt in view of the result established in chapter 4
that in a generic situation multidimensional lossless
two-ports may not be synthesizable as cascade interconnection
of most elementary passive building blocks. Moreover, exactly
how these synthesis schemes can be utilized in special cases
of practical interest when the frequency response of the
filter is required to have certain symmetries, for example,
spherical symmetry (image processing applications) or planar
or conical symmetry (direction finding applications) remains
to be investigated. Attention has only been restricted to the
quarter plane typei recursive schemes so far. Other recursive
schemes such as the symmetric or the asymmetric half plane or
the fully recursive half plane recursive schemes and
multidimensional generalizations thereof also needs to be
considered.

The close relationship between passive filtering - and
modelling of stationary or nearly stationary stochastic
processes is well known for one-dimensional signals. The
results of the present investigation can thus be potentially
utilized towards resolving problems in the domain of
modelling of random fields e.g., in (spectral) estimation,
and prediction problems associated with mnmultidimensional
signals. Multidimensional extensions of various time/space
varying adaptive filtering schemes can also prove to be an
important topic of future research in this context.

Since generic multidimensional signal processing tasks are
severly computation intensive the feasibility of implemention
of the algorithms resulting from the above studies in
high-speed architechtures is also an important area of
investigation. For example, in the specific problem of fast
image interpolation and decimation dealt with in chapter S
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details of issues relating to implementation in systolic VLSI
and/or optical architechtures remain to be studied and can

form a topic of future research.
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SHP | SPHP
| 1

SSHP IHP —D RHP

WSHP s widest- sense Hurwitz polynomial
SHP = scattering-Hurwitz polynomial’
SPHP s selt-paraconjugate Hurwitz polynomial
SSHP sstrict-sense Hurwit2 polynomial

RHP s:reactance Hurwitz polynomial

IHP s immittance Hurwit2z polynomial

Figure 3.1

Hierarchical relationship between various classes
of multidirensional stable polynomials.
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Pigure 4.1
Cascade decomposition of a multidimensional

lossless two-port
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Figure 5.3 i-th Stage of interpolator and its polyphase structure.




't

Py (n

)

y‘f’.!"

Py

(u‘)

a )

‘ n, Pz(n‘l a
‘ * ‘ ' bv:nf:

FPigure S.4 i-th Stage of decimator and its polyphase structure.

1

- .‘-r $- .,c \-. « \v :';'-’.f-';.';'. "'f"::'".'

qm' (ni) or pp(ri).

~129-

yi(n) | aurryT
B(0) | n() h(2) h{d) hin =1}
0
.-1 1 .-1 .-1
x(n) INPUT

Ly

‘(:.17?

Figure 5.5 Typical implementation corresponding to

4*‘:.-‘“‘".'; i

%
1)

¢

™
= {’ e




Figure 5.6 Illustration of test input signals
(st), (s2), (s3).

-130-



.
1)

.H & Ay

2

A
~

-
1 ‘

Ty
Sl

27

(T2)

i
-
<

~~r 8 i

v
v

SN S

(T3)

Fiqure 5.7 Interpolated (Sl1l), (S2), (S83). L=2.



e | YA (AT |eieen

(U3)
(82), (83). L=3

(Ul)
(u2)

T R N S W PN P ST A S X AN LKA R RSN Y N LY NN L LU ATRATT )

Figure 5.8 Interpolated (sl1),

%




- %

l’ C mat (l Il 12 I3 . lN':z.
1 .

-133-




Figure 5.10 Decimated (Ul), (U2), (U3). M=3,
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RADC plans and executes research, development, test
and selected acquisition programs in suppoat of
Command, Control, Communications and Intelligence
(C31) activities. Technical and engineering '
dupport within areas of competence is provided to
ESO Program Offices (POs) and other ESD elements

Lo pergorm effective acquisition 0f C71 systems.
The areas of technical competence include
communications, command and control, battle
management, information processing, sunveillance
.8ensdons, 4intelligence data collection and handling,
sclid state sciences, electromagnetics, and
propagation, and electrondic, maintainability,

and compatibility.
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